Now showing 1 - 2 of 2
  • Publication
    Mobile Green E-Waste Management Systems using IoT for Smart Campus
    This paper presents the design and development of mobile "green"electronic waste (e-waste) management systems using Internet of Things (IoT) for smart campus. The system uses Raspberry Pi 3 Model B v1.2 microcontroller for monitoring e-waste object detection, e-waste count, and bin percentage level, respectively. TensorFlow Lite application programming interface (API) is used to run Single Shot Multibox Detector (SSD)Lite-MobileNet-v2 model trained on Microsoft Common Objects in Context (MSCOCO) dataset for e-waste object detection in image. All the monitoring data are stored and retrieved in ThingSpeak cloud platform using Hypertext Transfer Protocol (HTTP) and Message Queuing Telemetry Transport (MQTT) protocol over the Internet and displayed via interactive Android-based mobile user interface (UI). Furthermore, automatic e-mail notification will be sent to waste collector for bin collection whenever e-waste bin percentage level is greater than predetermined threshold value of 80% full.
  • Publication
    Perpendicular High Isolation MIMO Antenna
    This research presented a perpendicular high isolation MIMO antenna for LTE advance application. A high gain perpendicular MIMO antenna is concentrated on designing used in LTE advance application. The issues of low isolation of conventional antenna can be solved by structuring a MIMO antenna in order to increase the isolation in LTE advance application. Generally, the array antenna design causes a bigger antenna size and has a mutual coupling which lead to spectral efficiency damage and reduce the MIMO antenna framework performance. The substrate material like FR-4 is choosing as a dielectric substrate due to its good performances for many applications beside it has a low cost and more usable. The advantage of copper such as has a great relative material, cheaper and easy to construct is choose in this project as a conductive material. ADS software has been utilized for the structure stage to design the antenna. Then, the results are evaluated in terms of return loss (S11 and S22), mutual coupling (S12 and S21), match impedance, directivity, radiation pattern, gain and radiated power. Vector Network Analyzer (VNA) is used to measure the fabricated antenna. The factor of cable loses and the soldering technique will make the measurement result was slightly change from the simulating result. However, the antenna design satisfied the proficiency necessity of the antenna which the frequency is drop at 2.5 GHz with the return loss is below than −10 dB.