Now showing 1 - 10 of 10
  • Publication
    Microstructural studies of Ag/TiO2 thin film; effect of annealing temperature
    ( 2021) ;
    C.H. Dewi Suryani
    ;
    A. Azliza
    ;
    ; ; ;
    V. Chobpattana
    ;
    L. Kaczmarek
    ;
    B. Jeż
    ;
    M. Nabiałek
    Microstructures are an important link between materials processing and performance, and microstructure control is essential for any materials processing route where the microstructure plays a major role in determining the properties. In this work, silverdoped titanium dioxide (Ag/TiO2) thin film was prepared by the sol-gel method through the hydrolysis of titanium tetra-isopropoxide and silver nitrate solution. The sol was spin coated on ITO glass substrate to get uniform film followed by annealing process for 2 hours. The obtained films were annealed at different annealing temperatures in the range of 300°C-600°C in order to observe the effect on crystalline state, microstructures and optical properties of Ag/TiO2 thin film. The thin films were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometry. It is clearly seen, when the annealing temperature increases to 500°C, a peak at 2θ = 25.30° can be seen which refers to the structure of TiO2 tetragonal anatase. The structure of Ag/TiO2 thin film become denser, linked together, porous and uniformly distributed on the surface and displays the highest cut-off wavelength value which is 396 nm with the lowest band gap value, which is 3.10 eV. Keywords: Ag/TiO2; Annealing Temperature; Microstructure; Optical Properties; Thin Film
  • Publication
    Influence of carbonization conditions and temperature variations on the characteristics of coconut shell carbon
    ( 2024-03)
    Yee Wen Yap
    ;
    Nurul Najiha Abu Bakar
    ;
    ; ;
    Siti Norsaffirah Zailan
    ;
    ; ; ;
    Mohd Yusry Mohamad Yunus
    This research aims to study the impact of carbonization atmospheres (ambient and nitrogen) and temperature on the properties of the coconut shell carbon (CSC) formed. To characterize the properties of CSC, the char yield percentage was calculated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of CSC while X-ray Diffraction (XRD) analysis was done to identify the degree of graphitization. The carbon formed by carbonization under the nitrogen atmosphere yields lower char percentages compared to the ambient atmosphere. When the carbonization temperature elevated, both atmospheres produced a lower char yield percentage. This result is aligned with the SEM analysis where more and larger pores were observed from the carbon produced at higher temperatures and the result was further enhanced under a nitrogen atmosphere. It was found that the char yield of CSC decreased from 20.9% to 11.4% when the carbonization temperature increased from 400°C to 1000°C under the ambient atmosphere. More significant changes were formed through the carbonization process under the nitrogen atmosphere (from 18.3% to 6.03%). Pores formed when the volatile materials are released due to the elevated carbonization temperature, resulting in a reduction in total weight thus, the char yield percentage. From the XRD, all CSC produced from both atmospheres with varying temperatures poses an amorphous XRD pattern. However, the right shifted peak and the presence of an additional peak of ~40° suggest that under different temperatures and atmospheres, the crystallinity of the CSC produced was affected. This research provides insight for optimizing CSC production in the future to enhance the application of CSC.
  • Publication
    Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review
    Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.
      4
  • Publication
    Effect of polyethylene glycol and sodium dodecyl sulphate on microstructure and self-cleaning properties of graphene oxide/TiO2 thin film
    In this study, a sol gel procedure for preparation of TiO2 thin films with graphene oxide (GO) was developed. The effect of PEG and SDS addition on the microstructure of the films as well as the photocatalytic activity of the thin film was also investigated. The morphology and surface structure of the films were studied by SEM and AFM while the photocatalytic activity of the films was analyzed by measuring the degradation of methylene blue under sunlight irradiation using UV-Vis spectrophotometer. It was found that GO/TiO2 thin film with PEG shows a smaller and porous particle while GO/TiO2 thin film with SDS formed a very smooth surface and very fine particles. Therefore, in AFM analysis reveals that surface roughness decreases with the addition of PEG and SDS. Finally, the photocatalytic activity showed that GO/TiO2 thin film with SDS have the most effective self-cleaning property which degrade 64% of methylene blue that act as model of contaminants.
      1
  • Publication
    Self-cleaning property of ag/tio2 thin film
    Ag/TiO2 thin film was prepared by the sol-gel method through the hydrolysis of titanium tetraisopropoxide and silver nitrate solution. Spin coating method was used to get uniform film on ITO glass substrate followed by annealing process for 1 hour. After that, all the samples were characterised using GIXRD and FESEM and undergone water contact angle test and MB degradation. Silver ion concentrations were varied to observe the effect on crystalline state, morphology, wettability and photocatalytic properties. The results showed that Ag/TiO2 thin film was in anatase phase and it could degrade nearly 70% of methylene blue after 150 min illumination. The formed Ag/TiO2 thin film has excellent self-cleaning property with compact, continuous, smooth, and good hydrophilicity property.
      2
  • Publication
    Factors of Controlling the Formation of Titanium Dioxide (TiO2) Synthesized using Sol-gel Method - A Short Review
    There have been experiments on TiO2 thin films synthesized utilizing sol-gel techniques. The sol-gel method is a straightforward technology that gives numerous benefits to the researcher, for instance, material's reliability, reproducibility, and controllability. Following from there, it can be utilized to make high-quality nano-structured thin films. According to previous studies, the TiO2 films' characteristics occur to be highly dependent on the production parameters and initial materials utilized. Controlling the formation of TiO2 thin films with the sol-gel method was momentarily discussed here.
      1
  • Publication
    Microstructural Study on Ag/TiO2 Thin Film
    The synthesis of Ag/TiO2 thin film was carried out by the sol–gel spin coating method using ITO glass as a substrate in a short period of stirring time, which is less than 25 min. The produced films were annealed in a furnace at 500◦C for 1 h. Various concentrations of AgNO3, from 0.1 to 0.9 M, were added. The as-prepared films were characterized using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results indicate that all films showed a single phase of anatase, TiO2. Ag/TiO2 thin films with 0.1 M of AgNO3 solution show that the elements form networks connecting Ag/TiO2 microstructures forming a porous, consistent, and continuous layer on the substrate surface.
      1
  • Publication
    Recent advances in synthesis of graphite from agricultural bio-waste material: a review
    Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.
      2  10
  • Publication
    Magnetic-Based Coreshell Nanoparticles as Potential Adsorbents for the Removal of Cu2+ under Ultraviolet (UV) Light
    The magnetite (Fe3O4) and maghemite (gFe2O3) nanoparticles, magnetite-silica-silver chloride (Fe3O4-SiO2-AgCl) and maghemite-silica-silver chloride (gFe2O3-SiO2-AgCl) coreshell structures have successfully been synthesized by using a simple wet chemistry method. The efficiency of these particles as the adsorbents for the removal of copper ion, Cu2+ in aqueous solution under UV light was investigated. Two different parameters were studied, namely the adsorbents contact time (60, 120, 180, 240 and 300s) and the solution-stirring rate (100, 200 and 300 rpm). From the results, the removal percentage of the copper ions from the solution were above 90% after 5 hours of adsorption process at 300 rpm by using Fe3O4 (94%) and gFe2O3 (92%) nanoparticles. The maximum removal of copper ions was nearly 100% when gFe2O3-SiO2-AgCl & Fe3O4-SiO2-AgCl coreshell particles were used. The samples that were prepared without magnetic core such as AgCl-SiO2, AgCl and SiO2 particles, showed lower percentage of the copper ions removal (78%, 60% and 20%, respectively). This situation shows that the magnetic nanoparticles plays and important role during the adsorption process due to their large active sites for the adsorption to occur.
      2
  • Publication
    Factors of controlling the formation of Titanium Dioxide (TiO₂) synthesized using Sol-gel method – a short review
    There have been experiments on TiOâ‚‚ thin films synthesized utilizing sol-gel techniques. The sol-gel method is a straightforward technology that gives numerous benefits to the researcher, for instance, material's reliability, reproducibility, and controllability. Following from there, it can be utilized to make high-quality nano-structured thin films. According to previous studies, the TiOâ‚‚ films' characteristics occur to be highly dependent on the production parameters and initial materials utilized. Controlling the formation of TiOâ‚‚ thin films with the sol-gel method was momentarily discussed here.
      86  26