Options
Hafiza Shukor
Preferred name
Hafiza Shukor
Official Name
Hafiza, Shukor
Alternative Name
Hafiza, S.
Shukor, H.
Main Affiliation
Scopus Author ID
56248038900
Researcher ID
AAK-7519-2020
Now showing
1 - 2 of 2
-
PublicationArthropods-mediated green synthesis of Zinc oxide nanoparticles using cellar spider extract a biocompatible remediation for environmental approach( 2024-06)
;M. A. R. Irfan ;MRM Huzaifah ;Maimunah Mohd Ali ;Nur Hulwani Ibrahim ;Muaz Mohd Zaini Makhtar ;Mahfuz Affif Mohd RuslanThis study presents an eco-friendly approach to synthesizing zinc oxide nanoparticles (ZnO NPs) using extracts from cellar spiders, addressing environmental and health concerns associated with conventional methods. The spider extract efficiently reduced zinc acetate dihydrate, and the synthesized ZnO NPs underwent comprehensive quantitative characterization, including size, shape, morphology, surface chemistry, thermal stability, and optical properties using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), zeta potential measurements, thermogravimetric analysis (TGA), and UV-vis spectroscopy. The nanoparticles exhibited intended characteristics, and their adsorption capability for methylene blue (MB) was quantitatively assessed using the Freundlich isotherm model and pseudo-second-order kinetic model, providing numerical insights into MB removal efficiency. The study demonstrates the potential of these green-synthesized ZnO NPs for applications in environmental remediation, wastewater treatment, and antibacterial therapies, contributing to both sustainable nanomaterial development and quantitative understanding of their functional properties. -
PublicationSynthesis of zinc oxide nanoparticles via cellar spider extract for enhanced functional properties in antimicrobial activities( 2024-06)
;M. A. R. Irfan ;M. N. Afnan Uda ;Mohamad Zaim Mohamad Zain ;R. A. IlyasThis study explores the green synthesis of zinc oxide nanoparticles (ZnO NPs) using cellar spider extracts as a sustainable alternative to traditional methods involving hazardous chemicals and radiation. The spider extracts effectively reduced zinc acetate dihydrate, yielding white precipitates indicative of ZnO NPs. Characterization through SEM revealed diverse morphologies, including spherical, rod-like, hexagonal, and uneven particles forming platelet-like aggregates. Further analyses, such as HPM, 3D nanoprofiler, and EDS, provided insights into size, shape, morphology, surface chemistry, thermal stability, and optical characteristics, quantifying the intended properties of the synthesized ZnO NPs. Antibacterial assays against E. coli and B. subtilis demonstrated significant antibacterial activity, affirming the nanoparticles' potential for antimicrobial applications. This green synthesis approach, validated through comprehensive characterization and quantitative measurements, offers a promising and environmentally friendly route for producing functional ZnO NPs.