Now showing 1 - 10 of 17
  • Publication
    Potential of Rapid Tooling in rapid heat cycle molding: a review
    ( 2022)
    Nurul Hidayah Mohamad Huzaim
    ;
    ; ;
    Abdellah El-hadj Abdellah
    ;
    ;
    Allan Rennie
    ;
    ;
    Sebastian Garus
    ;
    Katarzyna Błoch
    ;
    Andrei Victor Sandu
    ;
    Petrica Vizureanu
    ;
    Marcin Nabiałek
    Rapid tooling (RT) and additive manufacturing (AM) are currently being used in several parts of industry, particularly in the development of new products. The demand for timely deliveries of low-cost products in a variety of geometrical patterns is continuing to increase year by year. Increased demand for low-cost materials and tooling, including RT, is driving the demand for plastic and rubber products, along with engineering and product manufacturers. The development of AM and RT technologies has led to significant improvements in the technologies, especially in testing performance for newly developed products prior to the fabrication of hard tooling and low-volume production. On the other hand, the rapid heating cycle molding (RHCM) injection method can be implemented to overcome product surface defects generated by conventional injection molding (CIM), since the surface gloss of the parts is significantly improved, and surface marks such as flow marks and weld marks are eliminated. The most important RHCM technique is rapid heating and cooling of the cavity surface, which somewhat improves part quality while also maximizing production efficiencies. RT is not just about making molds quickly; it also improves molding productivity. Therefore, as RT can also be used to produce products with low-volume production, there is a good potential to explore RHCM in RT. This paper reviews the implementation of RHCM in the molding industry, which has been well established and undergone improvement on the basis of different heating technologies. Lastly, this review also introduces future research opportunities regarding the potential of RT in the RHCM technique.
  • Publication
    Contribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: a review
    ( 2022)
    Muhd Hafizuddin Yazid
    ;
    ; ;
    Marcin Nabiałek
    ;
    ; ;
    Marwan Kheimi
    ;
    Andrei Victor Sandu
    ;
    Adam Rylski
    ;
    Bartłomiej Jeż
    There is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface.
  • Publication
    Warpage optimisation using recycled Polycar-bonates (PC) on front panel housing
    ( 2021)
    Nur Aisyah Miza Ahmad Tamizi
    ;
    ;
    Abdellah El-hadj Abdellah
    ;
    ;
    Marcin Nabiałek
    ;
    Jerzy J. Wysłocki
    ;
    Bartłomiej Jeż
    ;
    Paweł Palutkiewicz
    ;
    Rozyanty Abdul Rahman
    ;
    ;
    Many studies have been done using recycled waste materials to minimise environmental problems. It is a great opportunity to explore mechanical recycling and the use of recycled and virgin blend as a material to produce new products with minimum defects. In this study, appropriate processing parameters were considered to mould the front panel housing part using R0% (virgin), R30% (30% virgin: 70% recycled), R40% (40% virgin: 60% recycled) and R50% (50% virgin: 50% recycled) of Polycarbonate (PC). The manufacturing ability and quality during preliminary stage can be predicted through simulation analysis using Autodesk Moldflow Insight 2012 software. The recommended processing parameters and values of warpage in x and y directions can also be obtained using this software. No value of warpage was obtained from simulation studies for x direction on the front panel housing. Therefore, this study only focused on reducing the warpage in the y direction. Response Surface Methodology (RSM) and Genetic Algorithm (GA) optimisation methods were used to find the optimal processing parameters. As the results, the optimal ratio of recycled PC material was found to be R30%, followed by R40% and R50% materials using RSM and GA methods as compared to the average value of warpage on the moulded part using R0%. The most influential processing parameter that contributed to warpage defect was packing pressure for all materials used in this study.
  • Publication
    Optimisation of shrinkage and strength on thick plate part using recycled LDPE materials
    ( 2021)
    Norshahira Roslan
    ;
    ;
    Abdellah El-hadj Abdellah
    ;
    ;
    Katarzyna Błoch
    ;
    Paweł Pietrusiewicz
    ;
    Marcin Nabiałek
    ;
    Janusz Szmidla
    ;
    Dariusz Kwiatkowski
    ;
    Joel Oliveira Correia Vasco
    ;
    ;
    Achieving good quality of products from plastic injection moulding processes is very challenging, since the process comprises many affecting parameters. Common defects such as warpage are hard to avoid, and the defective parts will eventually go to waste, leading to unnecessary costs to the manufacturer. The use of recycled material from postindustrial waste has been studied by a few researchers. However, the application of an optimisation method by which to optimise processing parameters to mould parts using recycled materials remains lacking. In this study, Response Surface Methodology (RSM) and Particle Swarm Optimisation (PSO) methods were conducted on thick plate parts moulded using virgin and recycled low-density polyethylene (LDPE) materials (100:0, 70:30, 60:40 and 50:50; virgin to recycle material ratios) to find the optimal input parameters for each of the material ratios. Shrinkage in the x and y directions increased in correlation with the recycled ratio, compared to virgin material. Meanwhile, the tensile strength of the thick plate part continued to decrease when the recycled ratio increased. R30 (70:30) had the optimum shrinkage in the x direction with respect to R0 (100:0) material where the shrinkage increased by 24.49% (RSM) and 33.20% (PSO). On the other hand, the shrinkage in the y direction for R30 material increased by 4.48% (RSM) and decreased by 2.67% (PSO), while the tensile strength of R30 (70:30) material decreased by 0.51% (RSM) and 2.68% (PSO) as compared to R0 (100:0) material. Validation tests indicated that the optimal setting of processing parameter suggested by PSO and RSM for R0 (100:0), R30 (70:30), R40 (60:40) and R50 (50:50) was less than 10%.
  • Publication
    Evaluation on the mechanical properties of Ground Granulated Blast Slag (GGBS) and fly ash stabilized soil via geopolymer process
    ( 2021)
    Syafiadi Rizki Abdila
    ;
    ; ; ;
    Małgorzata Rychta
    ;
    Izabela Wnuk
    ;
    Marcin Nabiałek
    ;
    Krzysztof Muskalski
    ;
    ;
    Muhammad Syafwandi
    ;
    Marek Isradi
    This study intended to address the problem of damaged (collapsed, cracked and decreased soil strength) road pavement structure built on clay soil due to clay soil properties such as low shear strength, high soil compressibility, low soil permeability, low soil strength, and high soil plasticity. Previous research reported that ground granulated blast slag (GGBS) and fly ash can be used for clay soil stabilizations, but the results of past research indicate that the road pavement construction standards remained unfulfilled, especially in terms of clay’s subgrade soil. Due to this reason, this study is carried out to further investigate soil stabilization using GGBS and fly ash-based geopolymer processes. This study investigates the effects of GGBS and ratios of fly ash (solid) to alkaline activator (liquid) of 1:1, 1.5:1, 2:1, 2.5:1, and 3:1, cured for 1 and 7 days. The molarity of sodium hydroxide (NaOH) and the ratio of sodium silicate (Na2SiO3) to sodium hydroxide (NaOH) was fixed at 10 molar and 2.0 weight ratio. The mechanical properties of the soil stabilization based geopolymer process were tested using an unconfined compression test, while the characterization of soil stabilization was investigated using the plastic limit test, liquid limit test, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results showed that the highest strength obtained was 3.15 MPA with a GGBS to alkaline activator ratio of 1.5 and Na2SiO3 to NaOH ratio of 2.0 at 7 days curing time. These findings are useful in enhancing knowledge in the field of soil stabilization-based geopolymer, especially for applications in pavement construction. In addition, it can be used as a reference for academicians, civil engineers, and geotechnical engineers.
  • Publication
    Warpage optimisation on the moulded part with straight drilled and conformal cooling channels using Response Surface Methodology (RSM), Glowworm Swarm Optimisation (GSO) and Genetic Algorithm (GA) optimisation approaches
    ( 2021) ; ;
    Joanna Gondro
    ;
    Safian Sharif
    ;
    ;
    Azlan Mohd Zain
    ;
    Abdellah El-hadj Abdellah
    ;
    ;
    Jerzy J. Wysłocki
    ;
    Marcin Nabiałek
    It is quite challenging to control both quality and productivity of products produced using injection molding process. Although many previous researchers have used different types of optimisation approaches to obtain the best configuration of parameters setting to control the quality of the molded part, optimisation approaches in maximising the performance of cooling channels to enhance the process productivity by decreasing the mould cycle time remain lacking. In this study, optimisation approaches namely Response Surface Methodology (RSM), Genetic Algorithm (GA) and Glowworm Swarm Optimisation (GSO) were employed on front panel housing moulded using Acrylonitrile Butadiene Styrene (ABS). Each optimisation method was analysed for both straight drilled and Milled Groove Square Shape (MGSS) conformal cooling channel moulds. Results from experimental works showed that, the performance of MGSS conformal cooling channels could be enhanced by employing the optimisation approach. Therefore, this research provides useful scientific knowledge and an alternative solution for the plastic injection moulding industry to improve the quality of moulded parts in terms of deformation using the proposed optimisation approaches in the used of conformal cooling channels mould.
  • Publication
    Hybrid mold : Comparative study of rapid and hard tooling for injection molding application using Metal Epoxy Composite (MEC)
    ( 2021) ;
    Safian Sharif
    ;
    Marcin Nabiałek
    ;
    ;
    Mohd Tanwyn Mohd Khushairi
    ;
    Jerzy J. Wysłocki
    ;
    ; ;
    Mohd Azlan Suhaimi
    ;
    Katarzyna Błoch
    The mold-making industry is currently facing several challenges, including new competitors in the market as well as the increasing demand for a low volume of precision moldings. The purpose of this research is to appraise a new formulation of Metal Epoxy Composite (MEC) materials as a mold insert. The fabrication of mold inserts using MEC provided commercial opportunities and an alternative rapid tooling method for injection molding application. It is hypothesized that the addition of filler particles such as brass and copper powders would be able to further increase mold performance such as compression strength and thermal properties, which are essential in the production of plastic parts for the new product development. This study involved four phases, which are epoxy matrix design, material properties characterization, mold design, and finally the fabrication of the mold insert. Epoxy resins filled with brass (EB) and copper (EC) powders were mixed separately into 10 wt% until 30 wt% of the mass composition ratio. Control factors such as degassing time, curing temperature, and mixing time to increase physical and mechanical properties were optimized using the Response Surface Method (RSM). The study provided optimum parameters for mixing epoxy resin with fillers, where the degassing time was found to be the critical factor with 35.91%, followed by curing temperature with 3.53% and mixing time with 2.08%. The mold inserts were fabricated for EB and EC at 30 wt% based on the optimization outcome from RSM and statistical ANOVA results. It was also revealed that the EC mold insert offers better cycle time compared to EB mold insert material.
      15  5
  • Publication
    Warpage optimisation using Recycled Polycar-bonates (PC) on Front Panel Housing
    ( 2021)
    Nur Aisyah Miza Ahmad Tamizi
    ;
    ;
    Abdellah El-hadj Abdellah
    ;
    ;
    Marcin Nabiałek
    ;
    Jerzy J. Wysłocki
    ;
    Bartłomiej Jeż
    ;
    Paweł Palutkiewicz
    ;
    Rozyanty Abdul Rahman
    ;
    ;
    Many studies have been done using recycled waste materials to minimise environmental problems. It is a great opportunity to explore mechanical recycling and the use of recycled and virgin blend as a material to produce new products with minimum defects. In this study, appropriate processing parameters were considered to mould the front panel housing part using R0% (virgin), R30% (30% virgin: 70% recycled), R40% (40% virgin: 60% recycled) and R50% (50% virgin: 50% recycled) of Polycarbonate (PC). The manufacturing ability and quality during preliminary stage can be predicted through simulation analysis using Autodesk Moldflow Insight 2012 software. The recommended processing parameters and values of warpage in x and y directions can also be obtained using this software. No value of warpage was obtained from simulation studies for x direction on the front panel housing. Therefore, this study only focused on reducing the warpage in the y direction. Response Surface Methodology (RSM) and Genetic Algorithm (GA) optimisation methods were used to find the optimal processing parameters. As the results, the optimal ratio of recycled PC material was found to be R30%, followed by R40% and R50% materials using RSM and GA methods as compared to the average value of warpage on the moulded part using R0%. The most influential processing parameter that contributed to warpage defect was packing pressure for all materials used in this study.
      2  8
  • Publication
    The influence of MMA esterification on interfacial adhesion and mechanical properties of hybrid kenaf bast/glass fiber reinforced unsaturated polyester composites
    ( 2021) ;
    Syed Zhafer Firdaus Syed Putra
    ;
    ;
    Irwana Nainggolan
    ;
    Bartłomiej Jeż
    ;
    Marcin Nabiałek
    ;
    ;
    Andrei Victor Sandu
    ;
    Petrica Vizureanu
    ;
    ;
    Dariusz Kwiatkowski
    ;
    Izabela Wnuk
    The demand for natural fiber hybrid composites for various applications has increased, which is leading to more research being conducted on natural fiber hybrid composites due to their promising mechanical properties. However, the incompatibility of natural fiber with polymer matrix limits the performance of the natural fiber hybrid composite. In this research work, the mechanical properties and fiber-to-matrix interfacial adhesion were investigated. The efficiency of methyl methacrylate (MMA)-esterification treatments on composites’ final product performance was determined. The composite was prepared using the hand lay-up method with varying kenaf bast fiber (KBF) contents of 10, 15, 20, 25, 30, 35 (weight%) and hybridized with glass fiber (GF) at 5 and 10 (weight%). Unsaturated polyester (UPE) resin and methyl ethyl ketone peroxide (MEKP) were used as binders and catalysts, respectively. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the effects of MMA-esterification treatment on tensile strength and morphology (tensile fracture and characterization of MMA-esterification treatment) of the composite fabricated. The tensile strength of MMA-treated reinforced UPE and hybrid composites are higher than that of untreated composites. As for MMA treatment, 90 min of treatment showed the highest weight percent gain (WPG) and tensile strength of KBF-reinforced UPE composites. It can be concluded that the esterification of MMA on the KBF can lead to better mechanical properties and adhesion between the KFB and the UPE matrix. This research provides a clear reference for developing hybrid natural fibers, thus contributing to the current field of knowledge related to GF composites, specifically in transportation diligences due to their properties of being lightweight, superior, and involving low production cost.
      1  5