Options
Nor Azizah Parmin
Preferred name
Nor Azizah Parmin
Official Name
Nor Azizah, Parmin
Alternative Name
Parmin, N. A.
Parmin, Nor Azizah
Parmin, Nor A.
Main Affiliation
Scopus Author ID
57195835481
Researcher ID
S-6303-2019
Now showing
1 - 2 of 2
-
PublicationArthropods-mediated green synthesis of Zinc oxide nanoparticles using cellar spider extract a biocompatible remediation for environmental approach( 2024-06)
;M. A. R. Irfan ;MRM Huzaifah ;Maimunah Mohd Ali ;Nur Hulwani Ibrahim ;Muaz Mohd Zaini Makhtar ;Mahfuz Affif Mohd RuslanThis study presents an eco-friendly approach to synthesizing zinc oxide nanoparticles (ZnO NPs) using extracts from cellar spiders, addressing environmental and health concerns associated with conventional methods. The spider extract efficiently reduced zinc acetate dihydrate, and the synthesized ZnO NPs underwent comprehensive quantitative characterization, including size, shape, morphology, surface chemistry, thermal stability, and optical properties using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), zeta potential measurements, thermogravimetric analysis (TGA), and UV-vis spectroscopy. The nanoparticles exhibited intended characteristics, and their adsorption capability for methylene blue (MB) was quantitatively assessed using the Freundlich isotherm model and pseudo-second-order kinetic model, providing numerical insights into MB removal efficiency. The study demonstrates the potential of these green-synthesized ZnO NPs for applications in environmental remediation, wastewater treatment, and antibacterial therapies, contributing to both sustainable nanomaterial development and quantitative understanding of their functional properties. -
PublicationCost-effective fabrication of polydimethylsiloxane (PDMS) microfluidics for point-of-care application( 2024-06)
;Noor Amalina Aini Abdul Karim ;Siti Fatimah Abd RahmanMicrofluidics fabrication pertains to the construction of small-scale devices and systems that manipulate and control small volumes of fluids. This process involves precise engineering and manufacturing procedures aimed at designing and producing these devices, which find applications in healthcare, environmental monitoring, and chemical analysis. The present study showcases an inexpensive approach to fabricate microfluidics channels using PDMS biopolymer and soft lithography technique to achieve laminar fluid flow. Initially, a robust and adhesive mold was created by fabricating a master template using several layers of SU-8 5 and SU-8 2015 negative photoresists. Subsequently, PDMS microfluidics channels were replicated and sealed onto a glass substrate through plasma bonding treatment. High-power microscopy images and profilometer analyses demonstrated successful fabrication with minimal deviation from the initial designs and the fabricated devices (less than 0.07 mm, less than 0.6°). Both the SU-8 master template and PDMS replicate displayed average microchannel height values and surface roughness of 100 μm and 0.26 μm or lower, respectively. Additionally, the fluid test confirmed laminar flow without any leakage post plasma oxidation, indicating the completion of an efficient and cost-effective fabrication process.