Now showing 1 - 2 of 2
  • Publication
    Use of Drone Flight Simulator for Bridging Theories of UAV Systems into Practice: A Pilot Study
    ( 2024-01-01)
    Mahyuddin Arsat
    ;
    Ahmad Nabil Md Nasir
    ;
    Lukman Hakim Ismail
    ;
    Muhammad Khair Noordin
    ;
    Adibah Abdul Latif
    ;
    ;
    Khairul Mirza Rosli
    Unmanned aerial vehicles (UAVs) are used in a variety of industries for a wide range of purposes. The UAV industry in Malaysia is experiencing an increase in demand for qualified workers, which has prompted Technical and Vocational Education and Training (TVET) institutions to introduce certification programs. These programs often rely on actual UAVs for training, which can be costly, restrict possibilities for hands-on practice, and present safety issues. Therefore, drone simulators have emerged as a learning tool to address the issue, recreating real-world operational environments for virtual pilot training and interaction. In order to comprehend participants’ understanding with learning through drone simulators, a qualitative research approach was adopted in this study. The researchers used an Unmanned Aerial Vehicle Technology Laboratory course as a pilot study to evaluate how students developed their understanding of flying principles while using UAV simulators. Semi-structured interviews were selected. A purposive sampling strategy was used to identify individuals who had completed the drone simulator sessions. Individual interviews were carried out to delve deeper into the experiences of the individuals. The findings of the study reveal three main categories: self-awareness, contextual understanding, and evaluating the effectiveness of practice. Self-awareness refers to students’ ability to reflect on their learning process and recognize how their theoretical understanding informs their practical application. Contextual understanding relates to students’ capacity to apply theoretical concepts within specific contexts. Evaluating the effectiveness of practice involves students critically assessing their own practice and identifying areas for improvement.
      8  19
  • Publication
    Synthesis of zinc oxide nanoparticles via cellar spider extract for enhanced functional properties in antimicrobial activities
    This study explores the green synthesis of zinc oxide nanoparticles (ZnO NPs) using cellar spider extracts as a sustainable alternative to traditional methods involving hazardous chemicals and radiation. The spider extracts effectively reduced zinc acetate dihydrate, yielding white precipitates indicative of ZnO NPs. Characterization through SEM revealed diverse morphologies, including spherical, rod-like, hexagonal, and uneven particles forming platelet-like aggregates. Further analyses, such as HPM, 3D nanoprofiler, and EDS, provided insights into size, shape, morphology, surface chemistry, thermal stability, and optical characteristics, quantifying the intended properties of the synthesized ZnO NPs. Antibacterial assays against E. coli and B. subtilis demonstrated significant antibacterial activity, affirming the nanoparticles' potential for antimicrobial applications. This green synthesis approach, validated through comprehensive characterization and quantitative measurements, offers a promising and environmentally friendly route for producing functional ZnO NPs.
      19  12