Options
Tijjani Adam
Preferred name
Tijjani Adam
Official Name
Tijjani, Adam
Alternative Name
Adam, T.
Adama, Tijjani
Adam, Tijjani
Adam, Tijjan
Tijjani, A.
Main Affiliation
Scopus Author ID
55074964600
Researcher ID
AAH-5534-2019
Now showing
1 - 2 of 2
-
PublicationComparative analysis on aluminium interdigitated electrode surface influence of ionic strength and electrolytes changes( 2024-06)
;Hussaini Adam ;Makram A. Fakhri ;Evan T. SalimThe field of generating surface thin films in sensing applications is emerging, and the incorporation of thin film technology into sensor development for enhanced sensing is becoming increasingly significant in various industries such as healthcare, environmental monitoring, and food safety. However, in order to achieve higher specificity in biosensing, advances in nanomaterial biofunctionalization are crucial. This research focuses on the fabrication and characterization of nanobiosensors with surface modification using two different sensing materials: zinc oxide and gold nanorod nanocomposites. The aim of this study was to enhance the sensing capabilities of nanobiosensors by incorporating surface modification with different sensing materials. The fabrication of nanobiosensors involved using silicon as the base material and conventional photolithography to fabricate aluminium interdigitated electrodes with three different structures and gap sizes. AutoCAD software was utilized to create three different photo masks with varying gap sizes. Physical characterization of the fabricated ALIDEs was conducted using atomic force microscope, high power microscope, scanning electron microscope, and 3D-profilormeter. The electrical characterization of the ALIDEs was performed using a Keithley 6487 picoammeter. I-V measurements were conducted on bare ALIDEs as well as surface modified ALIDEs with zinc oxide and gold nanorod. I-V measurements were also performed for pH scouting. The I-V measurements on bare ALIDEs revealed that ALIDEs modified with gold nanorod conducted the least current compared to ALIDEs modified with zinc oxide. Furthermore, the ALIDEs modified with gold nanorod were found to be stable under various electrolytes environments after undergoing pH scouting. -
PublicationAluminium interdigitated electrode with 5.0 μm gap for electrolytic scooting( 2024-06)
;Ismail Saad ;G. Yashni ;Nur Hulwani Ibrahim ;N. ParimonM. F. H. RaniThe goal of the research project is to design, fabricate, and characterize an extremely sensitive biosensor for use in healthcare. Using AutoCAD software, a novel IDE pattern with a 5 μm finger gap was created. Conventional photolithography and regular CMOS technology were used in the fabrication process. A 3D nano profiler, scanning electron microscopy (SEM), high-power microscopy (HPM), and low-power microscopy (LPM) were used to physically characterize the manufactured IDE. Chemical testing was done using several pH buffer solutions, and electrical validation was performed using I-V measurements. The Al IDE was produced, with a tolerance of 0.1 μm between the fabricated IDEs and the design mask. Electrical measurements verified the flawless fabrication of the IDE, and the device's repeatability was validated by the outcomes of comparable IDE samples. For each pH buffer solution, a modest additional volume of 2 μl was used to quantitatively detect slight current fluctuations in the microampere range. Through pH calibration for advanced applications in the realm of chemical sensors using an amperometric method, this research study has verified the chemical behavior of the IDE.