Now showing 1 - 9 of 9
  • Publication
    Hydrothermal Growth Zinc Oxide Nanorods for pH Sensor Application
    The aim of this work is to apply synthesized zinc oxide (ZnO) Nanorods using hydrothermal (HTL) growth technique for pH sensor application. The highly crystallite of ZnO Nanorods was obtained by anneal the growth ZnO Nanorods in furnace at 200 °C for 2 hours. Besides that, XRD analysis shows the produced ZnO Nanorods belonged to the (002) plane. Furthermore, Scanning Electron Microscope (SEM) images confirm that the ZnO Nanorods with hexagonal-faceted structural were successfully produced by HTL growth technique. In addition, Ultraviolet–visible (UV-Vis) spectrophotometer analysis shows that the synthesized ZnO belongs to the wide band gap semiconductor material. The growing ZnO Nanorods were then subjected to electrical measurement with various pH levels. The outcome demonstrates that the current rises as the solution changes from acidic to alkaline. Overall, our study shows a relationship between the electrical as well as the structural characteristics of ZnO Nanorods at various pH levels.
      1
  • Publication
    Enhanced Electrical Properties of Graphite-Doped Titanium Dioxide Thin Films via Sol-Gel Method
    (Universiti Malaysia Perlis, 2025-06) ; ; ;
    Graphite-doped titanium dioxide (Gr-TiOâ‚‚) thin films were synthesized via the sol-gel method to enhance the electrical properties of TiOâ‚‚ for advanced electronic and biosensor applications. The study focuses on optimizing the drying temperatures and graphite doping levels to achieve improved film crystallinity, morphology, and conductivity. Thin films were deposited using spin-coating and analyzed through scanning electron microscopy (SEM), high-power microscopy (HPM), and current-voltage (I-V) measurements. Results indicate that increasing drying temperature enhances grain coalescence and reduces porosity, leading to improved electrical conductivity. Graphite doping effectively narrows the bandgap and introduces additional charge carriers. These findings demonstrate the potential of Gr-TiOâ‚‚ thin films for applications in photovoltaics, sensors, and other optoelectronic devices.
      1  12
  • Publication
    Functionalized carbon nanotube - modified ELISA for early detection of heart attack
    A warning issue of heart attacks in young adults needs immediate attention lately. Enzyme-linked immunosorbent assay (ELISA) is an easy and commonly used method for detecting early stages of heart attack. Cardiac troponin I (cTnI) is a responsible biomarker for acute myocardial infarction. However, the conventional ELISA system was only able to detect at 100 pM of cTnI. To improve the system, enhancements were introduced through the integration of functionalized carbon nanotube (fCNT) to amplify cTnI detection signals. By utilizing the advantage of fCNT, a noticeable improvement in results can be obtained. The detection limit was lowered down to an impressive 10 pM. Furthermore, the change of absorbance increased from 31.90% for conventional ELISA surge to 98.61 for modified ELISA system. This three-fold increase in sensitivity shows remarkable improvement through the introduction of fCNT in modified ELISA technique.
      4  23
  • Publication
    Hydrothermal growth zinc oxide nanorods for pH sensor application
    The aim of this work is to apply synthesized zinc oxide (ZnO) Nanorods using hydrothermal (HTL) growth technique for pH sensor application. The highly crystallite of ZnO Nanorods was obtained by anneal the growth ZnO Nanorods in furnace at 200°C for 2 hours. Besides that, XRD analysis shows the produced ZnO Nanorods belonged to the (002) plane. Furthermore, Scanning Electron Microscope (SEM) images confirm that the ZnO Nanorods with hexagonal-faceted structural were successfully produced by HTL growth technique. In addition, Ultraviolet–visible (UV-Vis) spectrophotometer analysis shows that the synthesized ZnO belongs to the wide band gap semiconductor material. The growing ZnO Nanorods were then subjected to electrical measurement with various pH levels. The outcome demonstrates that the current rises as the solution changes from acidic to alkaline. Overall, our study shows a relationship between the electrical as well as the structural characteristics of ZnO Nanorods at various pH levels.
      1  19
  • Publication
    Properties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading
    Polyaniline/graphene oxide (PANI/GO) composites at different wt% of GO were prepared via solution method. PANI was mixed with the GO synthesized from the improved Hummer’s method. The formation of GO was confirmed via Raman and C/O ratio. Based on the FT-IR, XRD and SEM results, it confirmed the presence of both PANI and GO characteristics at 10.9°, 25.8° and 27.8° and interactions between PANI and GO particles in PANI/GO composites at different GO loading. SEM micrographs showed a folding and wrinkled surface of GO due to the defect upon oxidation process. This means that the weak π–π interactions or the agglomeration of GO have caused PANI unable to attach on the large conjugated basal planes of GO sheets. The defective domains made GO as an insulator as it contained distortions and oxygen-containing functional groups and their local decoration. Low-conductivity domain had conquered most of the GO region which later reduced the pathway of the current flow; therefore, conductivity is affected. The wrinkled structure also resulted in the low conductivity as it weakens the interfacial interaction between PANI and GO and thus disrupted the electron movement in the composites. Due to this, the electrical conductivity reached up to 1.83 × 10−10 S/cm as the GO loading increased to 50 wt%.
      2
  • Publication
    Functionalized Carbon Nanotube-Modified ELISA for Early Detection of Heart Attack
    A warning issue of heart attacks in young adults needs immediate attention lately. Enzyme-linked immunosorbent assay (ELISA) is an easy and commonly used method for detecting early stages of heart attack. Cardiac troponin I (cTnI) is a responsible biomarker for acute myocardial infarction. However, the conventional ELISA system was only able to detect at 100 pM of cTnI. To improve the system, enhancements were introduced through the integration of functionalized carbon nanotube (fCNT) to amplify cTnI detection signals. By utilizing the advantage of fCNT, a noticeable improvement in results can be obtained. The detection limit was lowered down to an impressive 10 pM. Furthermore, the change of absorbance increased from 31.90% for conventional ELISA surge to 98.61 for modified ELISA system. This three-fold increase in sensitivity shows remarkable improvement through the introduction of fCNT in modified ELISA technique.
      1
  • Publication
    Evaluation of the effect of silica fume on amorphous fly ash geopolymers exposed to elevated temperature
    ( 2021-01-01)
    Li O.H.
    ;
    ; ;
    Bayuaji R.
    ;
    ; ; ;
    Teng N.H.
    ;
    Nabiałek M.
    ;
    Jeż B.
    ;
    Sing N.Y.
    The properties of amorphous geopolymer with silica fume addition after heat treatment was rarely reported in the geopolymer field. Geopolymer was prepared by mixing fly ash and alkali activator. The silica fume was added in 2% and 4% by weight. The geopolymer samples were cured at room temperature for 28 days before exposed to an elevated temperature up to 1000â—¦C. The incorporation of 2% silica fume did not cause significant improvement in the compressive strength of unexposed geopolymer. Higher silica fume content of 4% reduced the compressive strength of the unexposed geopolymer. When subjected to elevated temperature, geopolymer with 2% silica fume retained higher compressive strength at 1000â—¦C. The addition of silica fume in fly ash geopolymer caused a lower degree of shrinkage and expansion, as compared to geopolymer without the addition of silica fume. Crystalline phases of albite and magnetite were formed in the geopolymer at 1000â—¦C.
      1  25
  • Publication
    Effect of Alkaline Treatment on Tensile Properties of Low Density Polyethylene/Bean Sprout Skin Composites
    (Universiti Malaysia Perlis, 2025-06-10) ; ;
    This study the effect of alkaline treatment on the tensile properties of LDPE/BSS and LDPE/BSSNaOH composites at various loadings (5–25 phr). The composites were fabricated through a Z-blade mixer and compressed at the temperature of 160oC. The tensile strength increased with filler loading up to 15 phr but decreased at 20 phr due to filler agglomeration. Alkali treatment enhanced filler-matrix adhesion, resulting in higher tensile strength and Young’s modulus for LDPE/BSSNaOH composites. Elongation at break decreased with filler content, indicating improved stiffness but reduced ductility. The findings highlight the role of filler loading and surface treatment in optimizing mechanical performance, offering insights for developing high-performance, sustainable polymer composites.
      1  17
  • Publication
    Evaluation of the effect of silica fume on amorphous fly ash geopolymers exposed to elevated temperature
    ( 2021)
    Ong Huey Li
    ;
    ; ;
    Ridho Bayuaji
    ;
    ; ; ;
    Ng Hui Teng
    ;
    Marcin Nabiałek
    ;
    Bartlomiej Jeż
    ;
    Ng Yong Sing
    The properties of amorphous geopolymer with silica fume addition after heat treatment was rarely reported in the geopolymer field. Geopolymer was prepared by mixing fly ash and alkali activator. The silica fume was added in 2% and 4% by weight. The geopolymer samples were cured at room temperature for 28 days before exposed to an elevated temperature up to 1000 °C. The incorporation of 2% silica fume did not cause significant improvement in the compressive strength of unexposed geopolymer. Higher silica fume content of 4% reduced the compressive strength of the unexposed geopolymer. When subjected to elevated temperature, geopolymer with 2% silica fume retained higher compressive strength at 1000 °C. The addition of silica fume in fly ash geopolymer caused a lower degree of shrinkage and expansion, as compared to geopolymer without the addition of silica fume. Crystalline phases of albite and magnetite were formed in the geopolymer at 1000 °C.
      1  19