Now showing 1 - 10 of 18
  • Publication
    Impact of different doping concentrations on the digital and analog FoM of a junctionless transistor
    ( 2020-01-08) ;
    Ring, Tan Shin
    ;
    The miniaturization of transistors causes many challenges in producing high quality junctions for a conventional transistor. As conventional transistors getting smaller in size, there are several critical challenges such as low on-state current, Ion and high gate leakage current, Ioff. Junctionless transistor (JLT) is an alternative to conventional transistor with junctions as it is uniformly doped and has no doping concentration gradients. This work embarks to study the impact of various doping concentrations towards the digital and analog figure-of-merit (FoM) of a JLT. Simulations of a junctionless transistor were carried out by using Silvaco ATLAS TCAD Tools for gate length of 25 nm. It is found that the best doping concentration is of 1 × 1018 cm-3 as it produces the highest Ion while maintaining low Ioff of 1.31 × 10-06 A and 6.94 × 10-11 A respectively in the digital realm. In terms of analog FoM, the best doping concentration is also found to be of 1 × 1018 cm-3 as it produces the highest cut-off frequency, ft of 227 GHz.
  • Publication
    A controlled growth of carbon nanofibers (CNFs) on graphene
    ( 2023-12)
    Mishtha Fiyatillah
    ;
    ; ;
    L K Wisnu Kita
    ;
    ; ;
    A F Abd Rahim
    Carbon nanofibers (CNFs) have superior properties such as high conductivity, good mechanical strength, high specific surface area, and chemical stability. CNFs-graphene hybrid material can be used as a high-quality electrode in electronics applications. In the CNFs on graphene synthesis, the growth parameters must be well controlled. This work observes the evolution of the CNF's growth on graphene on Ni at reaction temperatures of 800oC and 860oC and at different reaction times of 30 min, 60 min, and 120 min. This research aims to find suitable conditions for obtaining controllable growth of CNFs on graphene. Based on the SEM measurement, it was found that the 860oC reaction temperature at 60 min and 120 min reaction time led to longer and smaller widths of CNFs with high coverage and distribution on graphene. The CNFs on graphene formation were confirmed by the XRD analysis.
  • Publication
    Performance Analysis of a Double-Gate Junctionless Transistor with Varied Doping and Gate Underlap using Device Simulator
    ( 2021-01-01)
    Afiqah Nasir N.N.
    ;
    ; ;
    Farhanah Abd Rahim A.
    In this work, the impact of doping concentrations and gate underlap towards the electrical performance of a double-gate junctionless transistor (DG-JLT) were investigated using three-dimensional device simulator. The results show that the parameter of doping concentrations (Nd) has a greater impact towards the electrical performance of the transistor as compared to the gate underlap length (Lun). This can be seen in the results of leakage current (Ioff) and Drain-Induced Barrier Lowering (DIBL), where variations in Nd causes differences as high as 5 decades to be obtained for Ioff together with significant increase in DIBL. In overall, it was found that Nd=1×1018 cm-3 provides the best results in terms of the lowest DIBL and Ioff and the highest Ion/Ioff ratio. Meanwhile, longer Lun is found to give better electrical characteristics. The results obtained in this work can be used to further determine the most significant factors among the structural and material parameters that influence the electrical characteristics of a JLT.
  • Publication
    Fabrication of Graphene Electrode via Graphene Transfer Method for Bisphenol A (BPA) Detection
    Exposure of BPA is a concern as BPA can seep into food or beverages from containers and can possibly effects on human health especially endocrine systems. An electrochemical-based aptasensor utilizing graphene was developed in detecting endocrine disrupting compound Bisphenol A (BPA, 4,4'-(propane-2,2-diyl) diphenol). The graphene modified electrode was developed via graphene transfer. Fabrication and characterization of graphene transfer was studied in this paper using Scanning Electron Microscopy (SEM) and High-Power Microscope (HPM). In this research, the investigation of interfacial characteristic modified graphene with aptasensor and recognition of BPA with aptasensor had been done using electrochemical impedance spectroscopy (EIS). The increment of charge transfer resistance (Rct) before and after recognition of BPA denoting the accumulation of charge at the electrode surface in this research.
  • Publication
    A study on the impact of silicon-on-nothing (SON) versus silicon-on-insulator (SOI) on the electrostatic performance of a transistor
    (Universiti Malaysia Perlis (UniMAP), 2018-12) ; ;
    In this work, we investigate the impact of employing silicon-on-nothing (SON) versus silicon-on-insulator (SOI) on the electrostatic performance of a transistor with various ground-plane (GP) structures of Lg = 10 nm through the use of Sentaurus TCAD simulator. The digital figure-of-merit (FoM) of interest includes the results of drain-induced barrier lowering (DIBL) which is a major indicator of a control of short-channel effects (SCEs). It is found that SOI devices produce a lower off-current (Ioff) as compared to SON. In terms of the different GP architectures, the introductions of various GP architectures were found to affect the values of DIBL in SOI whereas the impact on SON is negligible. It can be concluded that GP-B architectures with ground plane underneath the channel areas of SOI is most effective in suppressing substrate depletion effects as evidenced from the lowest DIBL produces.
  • Publication
    A review: synthesis and mechanism of growth of the carbon nanotubes (CNTs) – graphene hybrid material and its application as electrodes
    The CNTs–graphene hybrids have many advantages and potential for use in a wide range of electronic applications as electrodes. The CNTs–graphene hybrid structure outperforms the structure of each material in terms of characteristics and performance. There are several methods to grow CNTs. This paper reviews the chemical vapor deposition (CVD) method used to synthesize CNTs–graphene hybrid material. This paper discusses the processes and growth parameters of the synthesis of the CNTs-graphene hybrid. This paper also discusses the growth mechanism and kinetics of CNTs. In addition, the potential and performance of CNTs–Graphene hybrid material as electrodes in batteries are also reviewed.
      23  1
  • Publication
    Correlation between crystal structure and thermal reaction of TiOâ‚‚ - Graphene Oxide
    TiO₂ - Graphene oxide (GO) (GO = 0-1.0wt %) powders were synthesised using sol-gel method and annealed at 500°C. The samples were then characterised using X-ray diffraction (XRD). The additional of GO gave significant influence on the crystal structure of TiO₂. The lattice parameter of TiO₂ were increased with decreasing GO concentration. The unit cell volume of TiO₂-GO annealed in N2 decreased with the oxygen occupancy. In contrary, the TiO₂-GO annealed in O₂ has an increase in O₂ occupancies in the lattice that was nearly proportional to its unit cell volume. A continuous weight loss was recorded by TGA at a temperature range of T= 30 - 1000°C that were associated with H2O, C-H and C-O species. It is concluded that the Ti-O-C and Ti-C bonds were formed for samples annealed in O₂ and N2 respectively. The weight loss of TiO₂-GO annealed in O₂ is lesser than that annealed in N2 for same concentration additional GO into TiO₂.
      1  11
  • Publication
    A Review: Synthesis and Mechanism of Growth of the Carbon Nanotubes (CNTs) – Graphene Hybrid Material and its Application as Electrodes
    The CNTs–graphene hybrids have many advantages and potential for use in a wide range of electronic applications as electrodes. The CNTs–graphene hybrid structure outperforms the structure of each material in terms of characteristics and performance. There are several methods to grow CNTs. This paper reviews the chemical vapor deposition (CVD) method used to synthesize CNTs–graphene hybrid material. This paper discusses the processes and growth parameters of the synthesis of the CNTs-graphene hybrid. This paper also discusses the growth mechanism and kinetics of CNTs. In addition, the potential and performance of CNTs–Graphene hybrid material as electrodes in batteries are also reviewed.
      1
  • Publication
    Nanoparticle-based biosensors for detection of heavy metal ions
    Heavy metal pollution is one of the most serious environmental problems in the world. Many efforts have been made to develop biosensors for monitoring heavy metals in the environment. Development of nanoparticle-based biosensors is the most effective way to solve this problem. This review presents the latest technology of nanoparticle-based biosensors for environment monitoring to detect heavy metal ions, which are magnetic chitosan biosensor, colorimetric biosensor, and electrochemical biosensor. Magnetic chitosan biosensor acts as a nano-absorbent, which can easily detect and extract poisonous heavy metal ions such as lead ions and copper ions. There are several methods to prepare the chitosan based on the nanoparticle, which are cross-linking, co-precipitation, multi-cyanoguanidine, and covalent binding method. In colorimetric biosensor, gold and silver nanoparticles are commonly used to detect the lead and mercury ions. In addition, this biosensor is very sensitive, fast and selective to detect metal ions based on the color change of the solution mixture. Meanwhile, electrochemical biosensor is widely used to detect heavy metal ions due to a simple and rapid process, easy, convenient and inexpensive. This biosensor is focused on the surface area, which leads to significant improvement in the performance of devices in terms of sensitivity. The wide surface area can affect the performance of the biosensor due to a limited space for operation of electrode. Therefore, reduced graphene oxide is a suitable material for making the electrochemical biosensor due to a wide surface area, good conductivity and high mechanical strength. In conclusion, these three technologies have their own advantages in making a very useful biosensor in the detection of heavy metal ions.
      1  19
  • Publication
    Correlation between crystal structure and thermal reaction of TiOâ‚‚ - Graphene Oxide
    TiO₂ - Graphene oxide (GO) (GO = 0-1.0wt %) powders were synthesised using sol-gel method and annealed at 500°C. The samples were then characterised using X-ray diffraction (XRD). The additional of GO gave significant influence on the crystal structure of TiO₂. The lattice parameter of TiO₂ were increased with decreasing GO concentration. The unit cell volume of TiO₂-GO annealed in N2 decreased with the oxygen occupancy. In contrary, the TiO₂-GO annealed in O₂ has an increase in O₂ occupancies in the lattice that was nearly proportional to its unit cell volume. A continuous weight loss was recorded by TGA at a temperature range of T= 30 - 1000°C that were associated with H2O, C-H and C-O species. It is concluded that the Ti-O-C and Ti-C bonds were formed for samples annealed in O₂ and N₂ respectively. The weight loss of TiO₂-GO annealed in O₂ is lesser than that annealed in N2 for same concentration additional GO into TiO₂.
      13  3