Now showing 1 - 5 of 5
  • Publication
    Contribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: a review
    ( 2022)
    Muhd Hafizuddin Yazid
    ;
    ; ;
    Marcin Nabiałek
    ;
    ; ;
    Marwan Kheimi
    ;
    Andrei Victor Sandu
    ;
    Adam Rylski
    ;
    Bartłomiej Jeż
    There is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface.
  • Publication
    Mechanical and durability analysis of fly ash based geopolymer with various compositions for rigid pavement applications
    ( 2022) ; ; ;
    Mohd Rosli Mohd Hasan
    ;
    Andrei Victor Sandu
    ;
    Petrica Vizureanu
    ;
    Che Mohd Ruzaidi Ghazali
    ;
    Aeslina Abdul Kadir
    Ordinary Portland cement (OPC) is a conventional material used to construct rigid pavement that emits large amounts of carbon dioxide (CO2) during its manufacturing process, which is bad for the environment. It is also claimed that OPC is susceptible to acid attack, which increases the maintenance cost of rigid pavement. Therefore, a fly ash based geopolymer is proposed as a material for rigid pavement application as it releases lesser amounts of CO2 during the synthesis process and has higher acid resistance compared to OPC. This current study optimizes the formulation to produce fly ash based geopolymer with the highest compressive strength. In addition, the durability of fly ash based geopolymer concrete and OPC concrete in an acidic environment is also determined and compared. The results show that the optimum value of sodium hydroxide concentration, the ratio of sodium silicate to sodium hydroxide, and the ratio of solid-to-liquid for fly ash based geopolymer are 10 M, 2.0, and 2.5, respectively, with a maximum compressive strength of 47 MPa. The results also highlight that the durability of fly ash based geopolymer is higher than that of OPC concrete, indicating that fly ash based geopolymer is a better material for rigid pavement applications, with a percentage of compressive strength loss of 7.38% to 21.94% for OPC concrete. This current study contributes to the field of knowledge by providing a reference for future development of fly ash based geopolymer for rigid pavement applications.
  • Publication
    Mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after ten years of curing age
    ( 2023)
    Ikmal Hakem A. Aziz
    ;
    ; ; ; ;
    Jitrin Chaiprapa
    ;
    Catleya Rojviriya
    ;
    Petrica Vizureanu
    ;
    Andrei Victor Sandu
    ;
    ; ;
    This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes.
  • Publication
    Chemical distributions of different Sodium Hydroxide molarities on fly ash/dolomite-based geopolymer
    ( 2022) ; ; ;
    Andrei Victor Sandu
    ;
    Petrica Vizureanu
    ;
    Omrane Benjeddou
    ;
    Afikah Rahim
    ;
    Masdiyana Ibrahim
    ;
    Ahmad Syauqi Sauffi
    Geopolymers are an inorganic material in an alkaline environment that is synthesized with alumina–silica gel. The structure of geopolymers consists of an inorganic chain of material and a covalent-bound molecular system. Currently, Ordinary Portland Cement (OPC) has caused carbon dioxide (CO2) emissions which causes greenhouse effects. This analysis investigates the impact on fly ash/dolomite-based-geopolymer with various molarities of sodium hydroxide solutions which are 6 M, 8 M, 10 M, 12 M and 14 M. The samples of fly ash/dolomite-based-geopolymer were prepared with the usage of solid to liquid of 2.0, by mass and alkaline activator ratio of 2.5, by mass. After that, the geopolymer was cast in 50 × 50 × 50 mm molds before testing after 7 days of curing. The samples were tested on compressive strength, density, water absorption, morphology, elemental distributions and phase analysis. From the results, the usage of 8 M of NaOH gave the optimum properties for the fly ash/dolomite-based geopolymer. The elemental distribution analysis exposes the Al, Si, Ca, Fe and Mg chemical distribution of the samples from the selected area. The distribution of the elements is related to the compressive strength and compared with the chemical composition of the fly ash and dolomite.
      1  4
  • Publication
    Contribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: A review
    ( 2022)
    Muhd Hafizuddin Yazid
    ;
    ; ;
    Marcin Nabiałek
    ;
    ; ;
    Marwan Kheimi
    ;
    Andrei Victor Sandu
    ;
    Adam Rylski
    ;
    Bartłomiej Jeż
    There is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface.
      5  21