Now showing 1 - 5 of 5
  • Publication
    Recognition of plant diseases by leaf image classification using deep learning approach
    ( 2023-02-21)
    Goy S.Y.
    ;
    Chong Y.F.
    ;
    Teoh T.K.K.
    ;
    ;
    Plant health is important in maintaining the sustainability of the foods crop. The key to prevent the loss of yield of plant crops is the identification of plant diseases. The process of monitor plant health manually is challenging as it required expert knowledge which is expensive and time-consuming. Hence, the image processing techniques can be useful for the detection and classification of plant leaf disease. In this project, the leaf images of 5 plant types in the PlantVillage dataset are used for plant type and plant disease classification. The original images are resized to the required input sized and the proposed background removal methods (improved HSV and GrabCut segmentation) are performed to reduce the background noise. The segmented images are then given to proposed models (AlexNet and DenseNet121) for training and classification. For plant type classification, DenseNet121 got a better validation accuracy of 99% compared to AlexNet with 91.2%. After that, the leaf image is given to plant disease models according to their species. All the plant disease models training with DenseNet121 can achieve high validation accuracy of 99%, 99%, 100%, 100% and 97% for apple, grape, potato, strawberry and tomato. Lastly, a user-friendly graphical user interface (GUI) is developed.
  • Publication
    Clinical validation of 3D mesh reconstruction system for spine curvature angle measurement
    ( 2023-02-21)
    Shanyu C.
    ;
    ;
    Fook C.Y.
    ;
    Azizan A.F.
    ;
    ; ;
    Spine curvature disorders are scoliosis, lordosis, and kyphosis. These disorders are mainly caused by the bad habits of the person during sitting, standing, and lying. There are about 3 to 5 out of 1,000 people who are affected by spine curvature disorder. The current conventional method used for diagnose this disorder, such as radiography, goniometry and palpation. However, these conventional methods require human skills and can be time-consuming, resulting to exhaustion of logistic. Therefore, there is a need to solve this problem by creating a Graphical User Interface (GUI) to analyse the human body posture through the 3D reconstructed model of the person. Hence, 3D map meshing reconstruction of the human body method is proposed. This project divided into three parts, which are the development of the GUI for human posture analysis, clinical validation and posture analysis of the 3D model. The 3D model reconstructed from 3D mapping parameters shows 100% accuracy of the assessed point. The lowest difference of angle for the comparison between clinical method (goniometer) and the GUI for male is (A.Pe) 0.930±0.870 and 1.240±0.860 for female (P.Pe). This finding of 3D model assessment system can be helpful for medical doctor to diagnose patient who have spine problem.
  • Publication
    Investigation on Medicated Drugs in ECG of Healthy Subjects
    Heart diseases are now the leading cause of death worldwide, it is estimated that around 7 million patients who are living in developed countries, lost their lives due to diseases related to their cardiovascular system. In Malaysia, cardiovascular diseases represents one fifth of total deaths in the country in the past three decades. Currently patients need some sort of drugs that help them to stabilize and restore the regular patterns of their heart beat because if the patients cannot manage to restore the normal heart beat pattern, the undesired heart condition could lead life threatening situations. Advancement of biotechnology has enabled the creation of new medicated drugs to provide better treatment options. However, when this treatment option fails and there is a need to provide emergency intervention to the patients in hospitals, the medical experts often need to know about the patients' intake of any medications prior to hospital admittance for providing suitable treatments. Sometimes, this would be a difficult task as the patient might be admitted in semi-conscious or unconscious state. Therefore, this study focusses on identification of different medicated drugs usage through analysis of ECG data of the users. The data for the experiment was obtained from physionet library, which provides ECG data of subjects administered with a combination of Dofetilide, Mexiletine, lidocaine, Moxifloxacin and Diltiazem medicated drugs. The use of morphological and non-linear features derived from the ECG signals were able to provide prediction accuracy of 77.26% using SVM classifier.
  • Publication
    Smart fall detection monitoring system using wearable sensor and Raspberry Pi
    The Smart Fall Detection Monitoring System is the name of the programme that monitors everyday activities and falls. It has an accelerometer sensor (ADXL345) and Raspberry Pi 3 microcontroller board to recognise and classify the patient's fall. Python programming was done on the Raspberry Pi terminal to enable communication between the accelerometer sensor and the computer. There were 10 subjects (5 males and 5 females) collected. While daily living activities include standing, squatting, walking, sitting, and lying, the data on falling includes forward falls and falls from medical beds. The K-nearest Neighbour (kNN) classifier can categorise the data of falling and non-falling (everyday living activity). The accuracy of the kNN classifier was 100% for the combined feature and (>87%) for each feature during the categorization of the falling and non-falling classes. In the meantime, multiclass classification performance for combining features and for each feature separately was >85%. kNN classifier was used to assess the feature. The feature was chosen based on the k-NN classifier's accuracy score as a percentage. For feature selection for falling and non-falling, feature (AcclX, AcclY, AngX, AngY and AngZ) in City-block distance was selected as they performed high accuracy which was 100%. The performance of the AngZ (77%) was good during the sub-classification of the sub-class dataset. As a result, all feature characteristics were chosen to be incorporated in the IoT fall detection device. The system is real-time communication for classifying fall and non-fall conditions with 100% accuracy using kNN classifier with cityblock distance.
      1
  • Publication
    Investigation on Body Mass Index Prediction from Face Images
    ( 2021-03-01)
    Chong Yen Fook
    ;
    ; ;
    Lim Whey Teen
    ;
    ;
    Body mass index is a measurement of obesity based on measured height and weight of a person and classified as underweight, normal, overweight and obese. This paper reviews the investigation and evaluation of the body mass index prediction from face images. Human faces contain a number of cues that are able to be a subject of a study. Hence, face image is used to predict BMI especially for rural folks, patients that are paralyzed or severely ill patient who unable to undergoes basic BMI measurement and for emergency medical service. In this framework, 3 stages will be implemented including image pre-processing such as face detection that uses the technique of Viola-Jones, iris detection, image enhancement and image resizing, face feature extraction that use facial metric and classification that consists of 3 types of machine learning approaches which are artificial neural network, Support Vector Machine and k-nearest neighbor to analyze the performance of the classification. From the results obtained, artificial neural network is the best classifier for BMI prediction system with the highest recognition rate of 95.50% by using the data separation of 10% of testing data and 90% of training data. In a conclusion, this system will help to advance the study of social aspect based on the body weight.
      1