Heart diseases are now the leading cause of death worldwide, it is estimated that around 7 million patients who are living in developed countries, lost their lives due to diseases related to their cardiovascular system. In Malaysia, cardiovascular diseases represents one fifth of total deaths in the country in the past three decades. Currently patients need some sort of drugs that help them to stabilize and restore the regular patterns of their heart beat because if the patients cannot manage to restore the normal heart beat pattern, the undesired heart condition could lead life threatening situations. Advancement of biotechnology has enabled the creation of new medicated drugs to provide better treatment options. However, when this treatment option fails and there is a need to provide emergency intervention to the patients in hospitals, the medical experts often need to know about the patients' intake of any medications prior to hospital admittance for providing suitable treatments. Sometimes, this would be a difficult task as the patient might be admitted in semi-conscious or unconscious state. Therefore, this study focusses on identification of different medicated drugs usage through analysis of ECG data of the users. The data for the experiment was obtained from physionet library, which provides ECG data of subjects administered with a combination of Dofetilide, Mexiletine, lidocaine, Moxifloxacin and Diltiazem medicated drugs. The use of morphological and non-linear features derived from the ECG signals were able to provide prediction accuracy of 77.26% using SVM classifier.