Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Investigation on Body Mass Index Prediction from Face Images
 
Options

Investigation on Body Mass Index Prediction from Face Images

Journal
Proceedings - 2020 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2020
Date Issued
2021-03-01
Author(s)
Chong Yen Fook
Universiti Malaysia Perlis
Lim Chee Chin
Universiti Malaysia Perlis
Vikneswaran Vijean
Universiti Malaysia Perlis
Lim Whey Teen
Universiti Malaysia Perlis
Hasimah Ali
Universiti Malaysia Perlis
Aimi Salihah Abdul Nasir
Universiti Malaysia Perlis
DOI
10.1109/IECBES48179.2021.9398733
Abstract
Body mass index is a measurement of obesity based on measured height and weight of a person and classified as underweight, normal, overweight and obese. This paper reviews the investigation and evaluation of the body mass index prediction from face images. Human faces contain a number of cues that are able to be a subject of a study. Hence, face image is used to predict BMI especially for rural folks, patients that are paralyzed or severely ill patient who unable to undergoes basic BMI measurement and for emergency medical service. In this framework, 3 stages will be implemented including image pre-processing such as face detection that uses the technique of Viola-Jones, iris detection, image enhancement and image resizing, face feature extraction that use facial metric and classification that consists of 3 types of machine learning approaches which are artificial neural network, Support Vector Machine and k-nearest neighbor to analyze the performance of the classification. From the results obtained, artificial neural network is the best classifier for BMI prediction system with the highest recognition rate of 95.50% by using the data separation of 10% of testing data and 90% of training data. In a conclusion, this system will help to advance the study of social aspect based on the body weight.
Subjects
  • body mass index | cla...

File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies