Options
Khairul Salleh Basaruddin
Preferred name
Khairul Salleh Basaruddin
Official Name
Basaruddin, Khairul Salleh
Alternative Name
Basaruddin, Khairul S.
Basaruddin, K
Bin Basaruddin, Khairul Salleh
Basaruddin, K. S.
Khairul, Salleh B.
Main Affiliation
Scopus Author ID
54683507500
Researcher ID
I-8478-2019
Now showing
1 - 10 of 35
-
PublicationEffective elastic constants of corrugated core sandwich plate microstructure considering imperfection in adhesive bonding( 2017-10-29)
;Hazman M.Imperfection of adhesive bonding in the corrugated core sandwich plate microstructure is commonly occured due to inaccuracies in fabrication process or environmental effect. Considering the geometrical changed due to the adhesive imperfection, it could influence the mechanical properties of sandwich plate structure. Hence, this paper was caried out to predict the effective elastic constants of corrugated core sandwich plate microstructure by considering the effect of adhesive imperfecction. Unit cell of corrugated core microstructure with variation of adhesive imperfection was developed using multiscale finite element software named Voxelcon. Homogenization method was integrated with probability function to predict the effective elastic constants of corrugated core sandwich plate structure. The proposed method could potentially be extended to other types of periodic microstrostructure in predicting the reliable homogenized properties of heterogeneous materials. -
PublicationHomogenized properties of porous microstructure: effect of void shape and arrangement( 2017-10-29)
;M. ThomasThis paper aims to investigate the effect of void shape and arrangement on the effective elastic properties of porous microstructure. The characteristics of the voids are in different shapes, sizes and arrangement. The porous microstructure models were developed using CATIA. Then, Voxelcon was employed to analyse the multiscale finite element model and determine the homogenized properties. Based on the results, void shape, size, and arrangement of porous microstructure were found sensitive to the elastic (homogenized) properties. Ellipsoidal shape having the highest Young's modulus, whereas the spherical shape has the highest Poisson's ratio and shear modulus. Cubical shape was the lowest for all the elastic properties. Moreover, the formation arrangement in void cubical shape produced the highest Young's modulus and shear modulus. -
PublicationParametric design optimization of an ankle rehabilitation robot using SolidWorks( 2020-12-18)
;Bin Ahmad S.A.This paper presents the approach to determine most suitable dimensions and volume of the proposed ankle rehabilitation robot design. This design aim is the robot needs to be portable without compromising the workspace of the proposed robot and it must fulfill all required basic ankle motions. To do this, optimisation was used to generate possible initial dimensions in order to achieve suitable length for the outer frame through minimization of the dimensions. Based on the selected variables and constraints, the result of the optimization shows minimization of the proposed design has been achieved through reduction of the dimension of the outer frame of the robot in which translate the reduction of the weight of the robot. -
PublicationFinite element prediction on the chassis design of UniART4 racing car( 2017-09-26)
;Zaman Z ;Md Taufiqur Rahman SarkarThis paper presents the analysis and evaluation of the chassis design for University Automotive Racing Team No. 4 (UniART4) car based on finite element analysis. The existing UniART4 car chassis was measured and modelled geometrically using Solidwork before analysed in FEA software (ANSYS). Four types of static structural analysis were used to predict the chassis design capability under four different loading conditions; vertical bending, lateral bending, lateral torsion and horizontal lozenging. The results showed the chassis subjected to the highest stress and strain under horizontal lozenging, whereas the minimum stress and strain response was obtained under lateral bending. The present analysis result could provide valuable information in predicting the sustainability of the current UniART car chassis design. -
PublicationDetermination of effective elastic properties of metal matrix composites with damage particulates using homogenization method( 2017-10-29)
;Halim S.Z.The present study aims to investigate the effect of micro-damage in particulates metal matrix composite on the elastic properties. The micro damage that perhaps could occurs during manufacturing process or due to environmental effects was modelled in three different types, namely shattered, debonded and breakage particulates with variation of volume fraction. The modelling and analysis were conducted based on homogenization theory by utilizing multiscale finite element software (Voxelxon). The results suggest that the elastic properties of metal matrix composite was sensitive to the geometrical defects of its particle. -
PublicationEffect of nano-clay fillers on mechanical and morphological properties of Napier/epoxy composites( 2017-10-29)
;Lim K.H.The effect of nano clay filler on the mechanical and morphological properties of Napier/epoxy composites was investigated. Neat, 2 wt%, 3 wt%, 4 wt% and 5 wt% of Montmorillonite (MMT) nano clay filled Napier/epoxy composites were fabricated by vacuum infusion technique. These specimens were tested in the three points bending according to the ASTM D790. The flexural stress-strain curve, flexural strength, flexural modulus and strain to failure were then discovered based on the flexural test results. The results revealed that flexural strength and flexural modulus increased when a particular amount of nano clay was added to the epoxy matrix. 3 wt% of nano clay filler yielded the highest flexural strength with an improvement of 163% when compared to the neat Napier/epoxy composites. Moreover, a maximum of 180% increases in flexural modulus was registered at 5 wt% of nano clay filler. The enhanced properties of nano clay filled composites were highly achieved due to better dispersion and distribution of nano clay in the epoxy resin as well as an increase on the interfacial bonding. Using Scanning Electron Microscopy (SEM), morphological analysis was conducted to observe the fracture surfaces of the specimens after the flexural test. Overall, the presence of nano clay filler loading with a range of 3 wt% to 5 wt% in the Napier/epoxy composites shows the significant improvement in mechanical and morphological properties. -
PublicationEnergy release rate analysis on the interface cracks of enamel-cement-bracket fracture using virtual crack closure technique( 2017-10-29)
;Syafiq Farhan SamshuriRozita HassanThis paper presents the energy method to evaluate fracture behavior of enamel-cement-bracket system based on cement thickness. Finite element (FE) model of enamel-cement-bracket was constructed by using ANSYS Parametric Design Language (APDL). Three different thickness were used in this study, 0.05, 0.2, and 0.271 mm which assigned as thin, medium and thick for both enamel-cement and cement bracket interface cracks. Virtual crack closure technique (VCCT) was implemented as a simulation method to calculated energy release rate (ERR). Simulation results were obtained for each thickness are discussed by using Griffith's energy balance approach. ERR for thin thickness are found to be the lowest compared to medium and thick. Peak value of ERR also showed a significant different between medium and thick thickness. Therefore, weakest bonding occurred at low cement thickness because less load required to produce enough energy to detach the bracket. For medium and thick thickness, both increased rapidly in energy value at about the mid-point of the enamel-cement interface. This behavior occurred because of the increasing in mechanical and surface energy when the cracks are increasing. However, result for thick thickness are higher at mid-point compared to thin thickness. In conclusion, fracture behavior of enamel cracking process for medium most likely the safest to avoid enamel fracture and withstand bracket debonding. -
PublicationConvergence study of global meshing on enamel-cement-bracket finite element model( 2017-09-26)
;Syafiq Farhan Samshuri ;Abdullah A.B.Ahmad Kamal AriffinThis paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model. -
PublicationEffects of fibre loading and moisture absorption on the tensile properties of hybrid Napier/glass/epoxy composites( 2017-10-29)
;Zikri M.The primary objective of this study was to investigate the effect of moisture absorption on the mechanical degradation of hybrid Napier/glass-epoxy composites. The hybrid Napier/glass-epoxy composites plates were produced by the vacuum infusion method using epoxy resin as a matrix. The hybrid composite specimens were tested after following 50 h of water immersion. The moisture content decreased as the glass fibre content increased. The wet and dry hybrid composite samples were subjected to tensile tests. The incorporation of the glass fibre into the Napier grass fibre-epoxy composites enhanced their tensile strength and tensile modulus. The tensile strength and tensile modulus of the hybrid Napier/glass-epoxy composites (24/6-70 vol%) were 43 MPa and 3.2 GPa, respectively. However, the tensile strength and tensile modulus properties highly degraded under wet conditions. -
PublicationExperimental and finite element analysis on ratchetting behaviour of glass fibre reinforced epoxy composites under cyclic loading( 2017-02-01)This study aims to examine the uniaxial and biaxial ratchetting responses of glass fibre reinforced epoxy (GRE) composite by experiment and finite element (FE) analysis. The uniaxial ratchetting of GRE composite laminate was tested under cyclic axial stress with a constant mean stress of 40 MPa and an amplitude stress between 26.67 MPa and 53.33 MPa. The biaxial ratchetting test was also performed on 50 mm diameter of GRE composite straight pipe. The GRE pipe was subjected to a constant internal pressure of 1.875 MPa and 1% of cyclic axial strain. The FE models were simulated using Abaqus in similar loading cases. The uniaxial ratchetting strain was found to increase with the number of cycles, but the ratchetting strain rate was decreased. The specimen showed no further ratchetting and exhibited shakedown after some strain accumulation. On the basis of the experiment and simulation in the biaxial test, it appears that ratchetting would occur in the hoop direction for a GRE pipe with no ratchetting observed in the axial direction. The results showed that the FE analysis over-predicts the ratchetting rate for uniaxial ratchetting test as compared to the experimental values, but under-predicts in the biaxial ratchetting test at initial cycles.