Now showing 1 - 9 of 9
  • Publication
    The effect of twin screw compounding parameters on the tensile properties of pineapple leaf/sea shell hybrid polymer composite using DOE approach
    Pineapple leaf and sea shell were used as natural fillers in this research due to its biodegradable nature, wide availability, continuous resources and low cost. This research work was carried out to investigate the effect of compounding process using twin screw extruder on the tensile performance of pineapple leaf / sea shell polymer composite using Design of Experiment (DOE) approach. A total of nine runs of were formulated and the resulitng hybrid composites were compounded using twin screw extruder. The short term tensile test was carried out to determine the tensile properties and the data were sunsequently analyse using DOE software. Pareto chart of the standardized effect and the main effect plot were employed to investigate the relationship between processing parameters and the tensile performance of the hybrid composite systems. Based on the initial DOE analysis, it is shown that compounding parameters had influenced the final mechanical behavior of the hybrid composites.
  • Publication
    Network Structure and Mechanical Properties of Flexible Electronic Interconnects based on Linear Low-Density Polyethylene (LLDPE) and Liquid Silicone Rubber (LSR) Conductive Polymer Composites
    Conductive polymer composites (CPCs) with the ability to maintain high conductivity whilst remaining flexible at various operating temperatures and conditions have gained interest as potential materials for electronic interconnect applications. The ability of a polymer matrix to conduct electricity is mainly dependent on the conductive filler loadings as well as the formation of network paths within the CPCs. The main aim of this research work was to establish and understand the correlation between the network structure formation and mechanical properties of linear low-density polyethylene/copper (LLDPE/Cu) and liquid silicone rubber/copper (LSR/Cu) CPCs. Various techniques such as electron microscopy, thermal studies, four-point probe, and tensile testing were employed in this study. Furthermore, selected samples were characterized and tested using synchrotron micro-x-ray fluorescence (XRF) technique and dynamic mechanical analysis (DMA). It was found that the electrical conductivity of the CPCs increased with increasing filler loadings. Addition of Cu filler had a marginal effect on the tensile strength of both LLDPE/Cu and LSR/Cu CPCs. Nevertheless, it was found that the elongation at break for LLDPE/Cu consistently increased with the addition of Cu whereas, for LSR/Cu samples, the elongation at break decreased with the addition of Cu at various loadings. The scanning electron microscopy (SEM) micrographs obtained show that the particles of Cu were closer to one another at higher filler loadings. The data obtained revealed the potential for utilizing CPCs as flexible interconnects suitable for advanced electronic applications.
      1
  • Publication
    Preparation of Carbon Nanotubes/Alumina Hybrid-Filled Phenolic Composite with Enhanced Wear Resistance
    Hybrid fillers can be produced via various methods, such as physical mixing and chemical modification. However, there is a limited number of studies on the effect of hybridisation on the mechanical performance of hybrid filler-reinforced polymer composites, especially in the context of wear performance. This study investigated the wear resistance of carbon nanotubes (CNTs)/alumina hybrid-filled phenolic composite, where two hybrid methods were used to produce the CNTs/alumina hybrid filler. The CNTs/alumina (CVD hybrid) was synthesised using the chemical vapour deposition (CVD) method, whereas the CNTs-/alumina (physically hybrid) was prepared using the ball milling method. The CNTs/alumina hybrid filler was then used as a filler in the phenolic composites. The composites were prepared using a hot mounting press and then subjected to a dry sliding wear test using a pin-on-disc (POD) tester. The results show that the composite filled with the CVD hybrid filler (HYB composite) had better wear resistance than the composite filled with physically hybrid filler (PHY composite) and pure phenolic. At 5 wt%, the HYB composite showed a 74.68% reduction in wear, while the PHY composite showed a 56.44% reduction in wear compared to pure phenolic. The HYB composite exhibited the lowest average coefficient of friction (COF) compared to the PHY composite and pure phenolic. The average COF decreased with increasing sliding speeds and applied loads. The phenolic composites’ wear and average COF are in the order HYB composite < PHY composite < pure phenolic under all sliding speeds and applied loads.
      2
  • Publication
    Micromechanical modeling of polyamide 11 nanocomposites properties using composite theories
    The use of organically modified clays as nano-reinforcement in polymer matrices is widely investigated owing to their remarkable reinforcement at low filler loading. In this body of work, the nanocomposites were prepared by melt blending nanoclay with polyamide 11 (PA 11) utilising a twin-screw extruder in order to maximise the dispersion of clay particles within the matrix during compounding. The main aim of the work was to study the reinforcing effect of nanoclay within PA 11 using two micromechanical model namely Halpin-Tsai and Mori-Tanaka composite theories. These theories were used to predict the effective tensile modulus of PA 11 nanocomposites and the results were compared to the experimental data. In addition, the Halpin-Tsai model was used to predict the storage modulus and heat distortion temperature (HDT) of PA 11 nanocomposites. It was found that the tensile modulus for nanocomposites with a high clay aspect ratio exhibits up to 10% higher when compared to the nanocomposites with lower clay aspect ratio. Thus, it is believed that the combination of clay aspect ratio and modulus contributes to the super reinforcing effect of nanoclay within the PA 11 matrix.
      1  5
  • Publication
    MicroMechanical Modeling of PolyaMide 11 nanocoMPosites ProPerties using coMPosite theories
    The use of organically modified clays as nano-reinforcement in polymer matrices is widely investigated owing to their remarkable reinforcement at low filler loading. In this body of work, the nanocomposites were prepared by melt blending nanoclay with polyamide 11 (PA 11) utilising a twin-screw extruder in order to maximise the dispersion of clay particles within the matrix during compounding. The main aim of the work was to study the reinforcing effect of nanoclay within PA 11 using two micromechanical model namely Halpin-Tsai and Mori-Tanaka composite theories. These theories were used to predict the effective tensile modulus of PA 11 nanocomposites and the results were compared to the experimental data. In addition, the Halpin-Tsai model was used to predict the storage modulus and heat distortion temperature (HDT) of PA 11 nanocomposites. It was found that the tensile modulus for nanocomposites with a high clay aspect ratio exhibits up to 10% higher when compared to the nanocomposites with lower clay aspect ratio. Thus, it is believed that the combination of clay aspect ratio and modulus contributes to the super reinforcing effect of nanoclay within the PA 11 matrix.
      1
  • Publication
    The effect of synthesis parameter On HKUST-1 nanocomposites studied by FTIR characterisation and mechanical testing
    ( 2024-12)
    Syazwana Ahmad
    ;
    ; ; ; ;
    E. M. Mahdi
    ;
    Hazizan Md Akil
    ;
    Muhammad Hafiz Hassan
    ;
    Norlin Nosbi
    ;
    Nurfina Yudasari
    In the present work, Hong Kong University of Science and Technology (HKUST-1) has been synthesised at room temperature with 1:0, 1:1 and 0:1 ratio of ethanol and water and reinforced into polyurethane. In order to understand the impact of synthesis parameters on HKUST-1 nanocomposites, an investigation was conducted using FTIR characterisation and mechanical testing. The objective was to examine the potential improvement of the reinforced polymer. The mechanical testing results were shown to be significantly influenced by the presence of HKUST-1 with 1:0 ratio of ethanol and water (sample A) into polyurethane (PU). The samples underwent Fourier Transform Infrared Spectroscopy (FTIR) analysis to determine the types of bonds within the polymer-MOF nanocomposites. It was observed that the reinforced nanoparticles did not undergo any chemical changes, as indicated by the recorded spectra, which can be related to the overlapping characteristics of HKUST-1 and PU. The findings indicate that the A/PU exhibited a notable impact in comparison to other materials, as evidenced by the results of the tensile test and nanoindentation study.
      1  12
  • Publication
    Preliminary investigation on the correlation between mechanical properties and conductivity of low-density polyethylene/carbon black (LDPE/CB) conductive polymer composite (CPC)
    ( 2022-01-24)
    Farah Badrul
    ;
    ;
    Salleh M.A.A.M.
    ;
    ;
    Azlin Fazlina Zakaria
    ;
    Muhamad N.A.
    ;
    The insulating nature of a polymer can be changed to electrically conductive by incorporating conductive fillers within the polymer matrix to form a conductive polymer composite (CPC). One of the potential application of CPCs are in the area of flexible electronic interconnect application. Nevertheless, the correlation between the electrical conductivity and mechanical properties of CPCs such as tensile was found to be limited. Therefore, this paper is aimed to report the preliminary investigation on the correlation between conductivity and mechanical properties of a low-density polyethylene (LDPE) incorporation with conductive filler which is carbon black (CB. It was observed that the tensile strength was decreased by up to 29.4% and the elongation of break was decreased by up to 90.6% at higher CB loading compared to pure LDPE. Nonetheless, the modulus of elasticity and the electrical conductivity of the composites were increased by up to 150.5% and 16.4% at higher CB loading respectively. Moreover, it was found that the effect of CB additions on the tensile modulus was greater compared to the conductivity of the CPCs.
      1  6
  • Publication
    Room Temperature Synthesis and Characterization of HKUST-1, Metal–Organic Frameworks (MOFs)
    ( 2023-01-01)
    Ahmad S.
    ;
    ;
    Mahdi E.M.
    ;
    ; ; ;
    Md. Akil H.
    ;
    Nosbi N.
    In the present work, HKUST-1 has been synthesized at room temperature with 1:0, 1:1, and 0:1 ratio of ethanol and water. A wide range of reaction conditions were explored in order to understand the effects of solvent and temperature. It was discovered that various precursors yielded products with various BET specific surface areas. The effect of water may therefore be explained by the decrease in reaction rate with an increasing concentration of reactants. The XRD data and SEM analysis showed that both MOFs were very crystalline in the product.
      1  9
  • Publication
    Preparation of carbon nanotubes/alumina hybrid-filled phenolic composite with enhanced wear resistance
    ( 2023) ; ;
    Hazizan Md Akil
    ;
    Muhammad Helmi Abdul Kudus
    ;
    ;
    Andrei Victor Sandu
    ;
    Petrica Vizureanu
    ;
    ; ; ;
    Ion Sandu
    ;
    Norlin Nosbi
    Hybrid fillers can be produced via various methods, such as physical mixing and chemical modification. However, there is a limited number of studies on the effect of hybridisation on the mechanical performance of hybrid filler-reinforced polymer composites, especially in the context of wear performance. This study investigated the wear resistance of carbon nanotubes (CNTs)/alumina hybrid-filled phenolic composite, where two hybrid methods were used to produce the CNTs/alumina hybrid filler. The CNTs/alumina (CVD hybrid) was synthesised using the chemical vapour deposition (CVD) method, whereas the CNTs-/alumina (physically hybrid) was prepared using the ball milling method. The CNTs/alumina hybrid filler was then used as a filler in the phenolic composites. The composites were prepared using a hot mounting press and then subjected to a dry sliding wear test using a pin-on-disc (POD) tester. The results show that the composite filled with the CVD hybrid filler (HYB composite) had better wear resistance than the composite filled with physically hybrid filler (PHY composite) and pure phenolic. At 5 wt%, the HYB composite showed a 74.68% reduction in wear, while the PHY composite showed a 56.44% reduction in wear compared to pure phenolic. The HYB composite exhibited the lowest average coefficient of friction (COF) compared to the PHY composite and pure phenolic. The average COF decreased with increasing sliding speeds and applied loads. The phenolic composites’ wear and average COF are in the order HYB composite < PHY composite < pure phenolic under all sliding speeds and applied loads.
      2  8