Options
Shayfull Zamree Abd. Rahim
Preferred name
Shayfull Zamree Abd. Rahim
Official Name
Shayfull Zamree, Abd. Rahim
Alternative Name
Shayfull, Zamree Abd Rahim
Abd Rahim, Shayfull Zamree Abd
Shayfull, Zamree
Abd Rahim, S. Z.
Abd Rahim, Shayfull Zamree Bin
Bin Abd Rahim, S. Zamree
Abd Rahim, S.
zamree bin abd Rahim, Shayfull
Rahim, Shayfull Zamree Abd
Zamree Abd Rahim, Shayfull
Zambree, Shayfull
Rahim, Shayfull Z.B.Abd
Zamree, A. R.Shayfull
Shayfull, Z.
Main Affiliation
Scopus Author ID
54941291700
Researcher ID
I-2840-2019
Now showing
1 - 5 of 5
-
PublicationPotential of soil stabilization using Ground Granulated Blast Furnace Slag (GGBFS) and fly ash via geopolymerization method: a review( 2022)
;Syafiadi Rizki Abdila ;Dumitru Doru Burduhos Nergis ;Andrei Victor SanduPetrica VizureanuGeopolymers, or also known as alkali-activated binders, have recently emerged as a viable alternative to conventional binders (cement) for soil stabilization. Geopolymers employ alkaline activation of industrial waste to create cementitious products inside treated soils, increasing the clayey soils’ mechanical and physical qualities. This paper aims to review the utilization of fly ash and ground granulated blast furnace slag (GGBFS)-based geopolymers for soil stabilization by enhancing strength. Previous research only used one type of precursor: fly ash or GGBFS, but the strength value obtained did not meet the ASTM D 4609 (<0.8 Mpa) standard required for soil-stabilizing criteria of road construction applications. This current research focused on the combination of two types of precursors, which are fly ash and GGBFS. The findings of an unconfined compressive strength (UCS) test on stabilized soil samples were discussed. Finally, the paper concludes that GGBFS and fly-ash-based geo-polymers for soil stabilization techniques can be successfully used as a binder for soil stabilization. However, additional research is required to meet the requirement of ASTM D 4609 standard in road construction applications, particularly in subgrade layers. -
PublicationContribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: a review( 2022)
;Muhd Hafizuddin Yazid ;Marcin Nabiałek ;Marwan Kheimi ;Andrei Victor Sandu ;Adam RylskiBartłomiej JeżThere is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface. -
PublicationMechanical and durability analysis of fly ash based geopolymer with various compositions for rigid pavement applications( 2022)
;Mohd Rosli Mohd Hasan ;Andrei Victor Sandu ;Petrica Vizureanu ;Che Mohd Ruzaidi GhazaliAeslina Abdul KadirOrdinary Portland cement (OPC) is a conventional material used to construct rigid pavement that emits large amounts of carbon dioxide (CO2) during its manufacturing process, which is bad for the environment. It is also claimed that OPC is susceptible to acid attack, which increases the maintenance cost of rigid pavement. Therefore, a fly ash based geopolymer is proposed as a material for rigid pavement application as it releases lesser amounts of CO2 during the synthesis process and has higher acid resistance compared to OPC. This current study optimizes the formulation to produce fly ash based geopolymer with the highest compressive strength. In addition, the durability of fly ash based geopolymer concrete and OPC concrete in an acidic environment is also determined and compared. The results show that the optimum value of sodium hydroxide concentration, the ratio of sodium silicate to sodium hydroxide, and the ratio of solid-to-liquid for fly ash based geopolymer are 10 M, 2.0, and 2.5, respectively, with a maximum compressive strength of 47 MPa. The results also highlight that the durability of fly ash based geopolymer is higher than that of OPC concrete, indicating that fly ash based geopolymer is a better material for rigid pavement applications, with a percentage of compressive strength loss of 7.38% to 21.94% for OPC concrete. This current study contributes to the field of knowledge by providing a reference for future development of fly ash based geopolymer for rigid pavement applications. -
PublicationPotential of fly ash geopolymer concrete as repairing and retrofitting solutions for marine infrastructure: A review( 2024)
;Noor Fifinatasha Shahedan ;Tony Hadibarata ;Muhammad Noor Hazwan Jusoh ;Ismallianto Isia ;Ana Armada Bras ;Aissa BouaissiFilbert Hilman JuwonoCorrosion in maritime infrastructure, particularly in reinforced concrete, has emerged as a significant cause for concern due to the presence of chloride ions in seawater. To address this challenge, geopolymer concrete has been proposed as a viable solution for retrofitting and restoring marine structures. This review paper explores the potential application of fly ash geopolymer concrete in marine infrastructure restoration. Fly ash's properties make it ideal for marine infrastructure restoration. Its high levels of amorphous silica and alumina enable geopolymerization, forming a strong binder resistant to chloride corrosion. Its fine, spherical particles enhance concrete workability and density, improving mechanical strength and impermeability. This geopolymer binder offers excellent resistance to corrosion from chloride ions commonly found in seawater, making fly ash geopolymer concrete highly suitable for marine applications. Overall, fly ash's chemical composition and physical traits offer resilience and sustainability in restoring marine infrastructure, ensuring long-term durability against corrosion. This review paper explores the potential application of fly ash geopolymer concrete in marine infrastructure restoration. By examining the primary forms of damage and mechanisms underlying concrete degradation in marine settings, this study highlights the durability and sustainability of geopolymer concrete compared to traditional concrete. Additionally, it discusses current solutions for repairing and retrofitting concrete in marine environments, emphasizing the promising characteristics of geopolymer concrete for integration into such structures. Through this analysis, innovative and environmentally conscious approaches are introduced for addressing corrosion-related challenges in the maritime industry, offering a resilient solution for the construction of enduring marine structures. Finally, recommendations for further research on the application of fly ash geopolymer concrete in marine infrastructure restoration are presented. -
PublicationContribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: A review( 2022)
;Muhd Hafizuddin Yazid ;Marcin Nabiałek ;Marwan Kheimi ;Andrei Victor Sandu ;Adam RylskiBartłomiej JeżThere is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface.21 5