Options
Nur Farhana Hayazi
Preferred name
Nur Farhana Hayazi
Official Name
Nur Farhana, Hayazi
Alternative Name
Hayazi, Nur Farhana
Hayazi, N.F
Nur Farhana Hayazi
Main Affiliation
Scopus Author ID
55899042500
Now showing
1 - 2 of 2
-
PublicationShort review: biowaste as a source of silica and Its application as a filler to fabricate the superhydrophobic silica-based coating( 2024-03)
;Nur Fatihah Mohd FadzilRazif Muhammed NordinSilica (SiO2) plays a major key ingredient in producing products such as toothpaste, ceramics, and paints, to name a few, as it acts as a stabilizing agent, filler and additive. Due to its excellent properties, the use of high-purity SiO2 in industrial applications is favourable. Unfortunately, high-purity SiO2 is expensive. Tetraethyl Orthosilicate (TEOS) is an example of a SiO2 precursor that is costly and harmful, yet frequently employed. This paper provides a short review of the advantages of biowaste materials as SiO2 precursors and their role as fillers in the fabrication of superhydrophobic coating. Researchers nowadays are attempting to lower the expense of employing high-purity SiO2 by extracting silica from biowaste using many methods such as acid leaching and alkali treatment as this option is highly sustainable. The growth of agricultural industries is exponential due to the increase in biowaste production. Therefore, this is one of the ways to utilize the use of biowaste in combatting the environmental issues regarding excess biowaste and receding pure resources. SiO2 from biowaste also can be utilized as filler and used to develop superhydrophobic coating, providing numerous potential applications. -
PublicationOxide growth behaviour of 800H and HR-120 series ni-based alloys on isothermal oxidation( 2024-03)
;Nurul Athirah Zainal @ Zaiton ;Aqmar Ikhmal AnuarThe isothermal oxidation of two types of Ni-based alloy, alloys 800H and HR-120 was investigated in this study. The alloy underwent an isothermal oxidation test at 950 ºC for 150 hours of exposure. Oxdised alloys were tested using oxidation kinetics methods, phase analysis using X-ray diffraction (XRD) and oxide morphology using scanning electron microscopy (SEM) techniques. Oxidation kinetics were determined based on the weight change per surface area of the oxidised alloy over a 30-hour interval. As a result, both alloys displayed a pattern of weight gain as the exposure period increased. Both alloys have followed a parabolic rate law, indicating a controlled kinetics of oxide scale diffusion. XRD analysis showed that the main Cr-containing oxide has formed on the surface of the alloy with the addition of Ti oxide for the 800H alloy and Nb oxide for the HR-120 alloy due to the different alloying element content of the two alloys. Oxide surface morphology records the uniform oxide scale that forms on the surface of the alloy.