Journal Articles

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 48
  • Publication
    Effect of NaOH molar concentration on microstructure and compressive strength of Dolomite/Fly Ash-Based geopolymers
    ( 2021)
    Emy Aizat Azimi
    ;
    M.A.A. Mohd Salleh
    ;
    ;
    Ikmal Hakem A. Aziz
    ;
    ;
    Jitrin Chaiprapa
    ;
    Petrica Vizureanu
    ;
    Sorachon Yoriya
    ;
    Marcin Nabiałek
    ;
    Jerzy J. Wyslocki
    Dolomite can be used as a source of aluminosilicate to produce geopolymers; however, this approach is limited by its low reactivity. This study analyzes the viability of producing geopolymers using dolomite/fly-ash with sodium silicate and NaOH solutions (at multiple concentrations) by determining the resultant geopolymers’ compressive strengths. The dolomite/fly-ash-based geopolymers at a NaOH concentration of ~22 M resulted in an optimum compressive strength of 46.38 MPa after being cured for 28 days, and the SEM and FTIR analyses confirmed the denser surface of the geopolymer matrix. The synchrotron micro-XRF analyses confirmed that the Ca concentration exceeded that of Si and Mg, leading to the formation of calcium silicate hydrate, which strengthens the resulting geopolymers.
  • Publication
    Insight on the structural aspect of ENR-50/TiO2 hybrid in KOH/C3H8O medium revealed by NMR spectroscopy
    ( 2020-01-01)
    Dahham O.S.
    ;
    ;
    Abu Bakar M.
    ;
    ;
    Alakrach A.M.
    ;
    ; ; ;
    Al-rashdi A.A.
    The ring-opening reactions (ROR) of epoxide groups in epoxidized natural rubber/titania (ENR-50/TiO2) hybrid in potassium hydroxide/isopropanol medium were examined using NMR spectroscopy and supported by the FTIR technique. The thermal behaviour of the hybrid was also studied using TG/DTG and DSC analyses. The 1H NMR results suggested that 16.82% of ROR occurred in the hybrid, while the 13C NMR results exhibited five new peaks at δ 19.5, 71.0, 73.7, 91.7 and 94.4 ppm in the hybrid. 2D NMR, such as HMQC, HMBC and COSY techniques, further scrutinized these assignments. The FTIR spectrum exhibited Ti-O-C characteristics via the peak at 1028 cm−1. The TG/DTG results showed four steps of thermal degradation at 44–148, 219–309, 331–489 and 629–810 °C due to the existence of Ti moieties along with a polymer chain mixture (intact and ring-opened epoxide groups) of ENR-50, which in turn led to an increase in the Tg value of the hybrid to 27 °C compared to that of purified ENR-50 at −17.72 °C.
      1
  • Publication
    The Effect of Spinacia oleracea Dye Absorption Time on ZnO-based Dye-Sensitized Solar Cells’ Electrical Performance
    ( 2022-12-01)
    Magiswaran K.
    ;
    ; ; ;
    Idris S.N.
    ;
    Abas Z.A.
    Dye-sensitized solar cells (DSSC) have attracted much attention over the past 20 years due to their significance in energy conversion. However, the dye soaking time may significantly impact the efficacy of the photoanode semiconductor to carry the electronic charge to which the dye molecules adhere. An optimized dye soaking time may prevent the recombination of photo-excited electrons that are injected into the semiconductor of the DSSC. This study scrutinized the dependence of the zinc oxide (ZnO) photoanode soaking time of Spinacia oleracea (spinach) dye on the photocurrent-voltage characteristics. The ZnO film layer (photoanode) was prepared with commercial ZnO nanopowder and applied onto a fluorine-doped tin oxide (FTO) glass substrate using the doctor blade method. The prepared DSSCs’ were subjected to a variety of characterizations, including current density-voltage (J-V) characterization, UV-visible characterization, scanning electron microscope (SEM), and X-ray diffraction (XRD). Comparing four variations of dye soaking time, ZnO-based DSSC photoanode soaked in the dye for an hour achieved an optimum efficiency of 0.03 %. This study proved that the efficiency of a DSSC can be improved by optimizing the dye soaking time.
      1
  • Publication
    Electrical Performance of Curcuma longa Extract Dye using SnO2-Based Photoanode Dye-Sensitized Solar Cell
    ( 2022-12-01)
    Siti Norhafizah Idris
    ;
    ; ; ;
    Magiswaran K.
    ;
    Abas Z.A.
    Due to their low output costs, straightforward manufacturing, and high effectiveness, dye-sensitized solar cell (DSSC) has a large following interest in the solar energy industry. Furthermore, due to its outstanding properties, tin oxide (SnO2) is an appealing semiconducting material suitable as a photoanode in DSSCs. In this research, the photoelectrodes of DSSC were fabricated using commercial SnO2 nanoparticles and sensitized with inorganic and organic dyes, N719 and Curcuma longa (turmeric) extract dye. On top of that, a platinum (Pt) counter electrode, iodide electrolyte and fluorine-doped tin oxide (FTO) coated glass substrate were used to fabricate the DSSC. The crystallographic structure and surface morphology of the SnO2 nanopowder were identified using X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations respectively. In addition, UV-Visible and current density-voltage curves were used to analyze the optical properties of the photoanodes and the cell’s electrical performance. As a result, it was found that the DSSC fabricated with N719 dye exhibited higher efficiency in contrast with the turmeric extract dye with SnO2 photoanodes.
      1
  • Publication
    Potential Applications of Geopolymer Cement-Based Composite as Self-Cleaning Coating: A Review
    Nowadays, concepts of self-cleaning have received great attention in construction building materials. Self-cleaning with the presence of photocatalyst has been applied in building materials to overcome the problem of building surfaces becoming dirty after exposure for a long time in highly polluted areas. To date, the concept of green blending materials has led to the development of a new binding material for green materials, which is geopolymer with an addition of photocatalyst. This review focused on the development of conventional self-cleaning paste, including the method of preparation and the impact of adding photocatalyst on physical and mechanical properties. However, although self-cleaning has been widely applied in conventional cement paste, its applications in geopolymers are still in the early stages of development and require more research. Therefore, this paper also intended to review the current knowledge on properties of geopolymer cement-based composite and its potential to be applied as a self-cleaning coating.
      1