Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Crypto-Core Design using Camellia Cipher
 
Options

Crypto-Core Design using Camellia Cipher

Journal
Journal of Physics: Conference Series
ISSN
17426588
Date Issued
2021-03-01
Author(s)
Wei Ci C.
Siti Zarina Md Naziri
Universiti Malaysia Perlis
Rizalafande Che Ismail
Universiti Malaysia Perlis
Razaidi Hussin
Universiti Malaysia Perlis
Mohd Nazrin Md Isa
Universiti Malaysia Perlis
Basir M.S.S.M.
DOI
10.1088/1742-6596/1755/1/012019
Abstract
Camellia cipher is another symmetric block cipher which allows the encryption and decryption process to share the same key. The cipher permits a 128-bits input data with three different key size: 128, 192 and 256 bits. This paper presents two hardware design approach of Camellia cipher, which are FPGA and custom-based design approach. These approaches utilized design softwares of Altera Quartus II with device family of Cyclone II and Synopsys Design Compiler. The performance of Camellia crypto-core design is then been evaluated based on the implementation platform in terms of speed, area and power. With an equal base of 50MHz of clock frequency, custom-based design is found more efficient than FPGA-based design due to the execution time achieved with 8.46ns, which is faster than the latter that consumed double the time with 16.075ns. The custom-based design achieved 15.13 Gbps of throughput. Besides, the power consumption of custom-based design is 1.3519 mW which is lower than the FPGA-based design. In a nutshell, the design has successfully done as it achieved expected encryption and decryption outcomes with acceptable performance.
File(s)
research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies