A new class of coagulant, from natural resource namely laterite soil has demonstrated efficiency in degrading a wide range of industrial organic pollutants into simple hydrocarbon structures or less toxic compounds. The composition study revealed the relative Si/Al/Fe: 0.57/0.33/0.10 ratios in laterite soil and surface morphology of laterite soil were investigated to analyze the fundamental degradation that drive the decolorization of Reactive Black 5 (RB 5). The interfacial and colloid aspects of laterite soil colloidosomes and dye particles were distinguished with the corresponding mechanism of coagulation–flocculation process. RB5 structure was destabilized by activation of laterite soil colloidosomes through charge neutralization and subsequent siloxane polymerization through enhancement of siloxanes monomers. This research also evaluated the rate laws and reaction mechanism for each of the main chemical network strands of RB 5. The result implied that all the chemical network strands followed the pseudo first order of reactions. Research approach has utilized Fourier Transform Infrared Spectroscopy, Gas Chromatography Mass Spectrometry and Ultraviolet–visible Spectrophotometry (FTIR, GCMS and UV–vis) to study the degradation intermediates structure, chemical derivatives and final products after coagulation–flocculation process.