Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. Journals
  4. International Journal of Nanoelectronics and Materials (IJNeaM)
  5. Remazol orange dye sensitized solar cell using graphene oxide and reduced graphene oxide working electrode
 
Options

Remazol orange dye sensitized solar cell using graphene oxide and reduced graphene oxide working electrode

Journal
International Journal of Nanoelectronics and Materials (IJNeaM)
ISSN
1985-5761
Date Issued
2018-12
Author(s)
Norhayati Sabani
Universiti Malaysia Perlis
Siti S. Mat isa
School of Microelectronic Engineering
Muhammad Mahyiddin Ramli
Faculty of Electronic Engineering & Technology
N. Rosli
School of Microlectronic Engineering
Abstract
Dye Sensitized Solar Cell (DSSC) is said as a potential solar device which offers easy, cheaper and greener materials and preparation process. However, the efficiency of this device is still an ultimate problem and challenge. In this paper, an organic Remazol orange dye was used as the DSSC dye sensitizer which prepared with different working electrodes. The different working electrodes consist of Titanium Dioxide (TiO2) with Graphene Oxide (GO) and TiO2 with reduced Graphene Oxide (rGO). In order to analyze the adsorption characteristics of GO and rGO, the solution was tested using Ultraviolet-Visible-Near Infrared Spectrophotometry and the surface morphology of all mixed pastes was observed under Atomic Force Microscopy and Scanning Electron Microscope. Then, the device performance was tested under illumination of solar cell simulator. From overall results, the efficiency for all tested devices was quite low from expectation. For this work, the performance of TiO2-rGO DSSC at 0.138% is 84.7% higher compared to the TiO2-GO DSSC which was 0.021%. This result was obtained when the working electrode and dye less exposed to the light during dye preparation process at 24 hours soaking time.
Subjects
  • Graphene oxide

  • Reduced-graphene oxid...

  • DSSC

  • Remazol orange dye

File(s)
Remazol Orange Dye Sensitized Solar Cell (937.14 KB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies