One of the topics that are commonly in focus of object detection and image recognition is virus detection. It is well known that to learn and detecting virus proven to be a challenging and quite complex task for computer systems under different noise level. This research work investigates the performances of preprocessing stages with Contrast feature extraction with K-Nearest Neighbor (KNN) classifier under various levels of noise. The real time experiment conducted proved that the proposed method are efficient, robust, and excellent of which it has produced a results accuracy of up to 88% for biological viruses images classification.