Options
Che Zulzikrami Azner Abidin
Preferred name
Che Zulzikrami Azner Abidin
Official Name
Abidin, Che Zulzikrami Azner
Main Affiliation
Now showing
1 - 10 of 15
-
PublicationBiotreatment of sulfonated dyestuffs with energy recovery in microbial fuel cell: Influencing parameters, kinetics, degradation pathways, mechanisms, and phytotoxicity assessment( 2021-08-01)
;Tan S.M. ;Wong Y.S. ;Thung W.E.Teoh T.P.Removal of recalcitrant sulfonated dyestuff intermediates from wastewater has been an urgent challenge for environmental technologies. In this regard, the biodegradations of monoazo Methyl Orange (MO) and diazo dyes Reactive Black 5 (RB5) towards wastewater treatment and bioelectricity generation in microbial fuel cell were investigated and compared through the studies on azo dye concentration, aeration, sampling points arrays, and electrode spacings. The degradation of diazo RB5 yielded higher chemical oxygen demand removal, decolourization efficiencies, and power generation over monoazo MO. The decolourization efficiency of RB5 (97.62%) increased with an increase of RB5 concentration (50 mg/L), suggesting that the system has the capability of removing higher RB5 concentration. However, contrary results were obtained with MO due to its toxicity. This study also demonstrated that the decolourization rate of diazo RB5 (0.1533 h-1) was ≈ 53% higher than monoazo MO (0.0727 h-1). The findings revealed that the degradation kinetic was remarkably influenced by the chemical structure of dye, where dye with more electron-withdrawing groups at para position are more susceptible to be reduced. Higher output voltage (568.59 mV) and power generation (108.87 mW/m2) were attained with RB5 due to electron donor availability and electron-shuttling characteristics of RB5 decolourized intermediates. Furthermore, detailed degradation pathways of MO and RB5 were presented based on the UV-vis and GC-MS results. The phytotoxicity assessment via Sorghum bicolor seeds had further verified the reduction in toxicity after the treatment of azo dyes. -
PublicationPolypropylene biofilm carrier and fabricated stainless steel mesh supporting activated carbon: Integrated configuration for performances enhancement of microbial fuel cell( 2021-08-01)
;Tan S.M. ;Wong Y.S. ;Thung W.E.Teoh T.P.The mass transfer resistance at the anode and the reduction of oxygen at the cathode are currently perceived as two major bottlenecks of microbial fuel cells. To overcome these issues, an integrated configuration was developed for performances enhancement on simultaneous bioelectricity generation and wastewater treatment in single chamber up-flow membrane-less microbial fuel cell (UFML-MFC). Polypropylene biofilm carriers were used as anodic packing materials and fabricated stainless steel mesh holder supporting activated carbon flakes (CF/SM) was employed as biocathode configuration in this study. The employments of polypropylene carriers and CF/SM enhanced not only the active surface area and microbial adhesion, but also the mass transfer of MFC system. The maximum output voltage, power and current generation achieved in this system were 615 mV, 162.59 mW/m2 and 468.74 mA/m2, respectively. In terms of wastewater treatment performance, UFML-MFC achieved 85.6% and 95.7% of COD and NH4+ removal, respectively. The COD reduction in closed circuit was 9.87% better than open circuit due to stimulation of electrochemical-active bacteria for electron transfer to the anode, which favoured organic matter degradation. The enrichment of electrogenic bacteria at A3, which was largest electrode spacing (23 cm) in the system resulted a higher voltage and power output compared to A1 (11 cm) and A2 (17 cm). Besides, the energy performances of this MFC system were also evaluated based on NERs (1.074 kWh/kg COD), NERv (22.86 Wh/m3) and CE (10.42%). -
PublicationDiscerning the biodegradation of binary dyes in microbial fuel cell: Interactive effects of dyes, electron transport behaviour, autocatalytic mechanism, and degradation pathways( 2022-06-01)
;Tan S.M. ;Wong Y.S. ;Teoh T.P.Yap K.L.This research presented the first attempt to investigate the effect of biodegradation of binary Acid Orange 7 (AO7) and Reactive Green 19 (RG19) on the performances of wastewater treatment and bioelectricity generation, using anti-gravity flow microbial fuel cell (AGF-MFC) system. The influences of initial dye concentration, substrate loading, sulphate concentration and application of quinones on system performances were comprehensively evaluated. The decolourization efficiencies of AO7 were higher than RG19 in binary solutions, at every tested concentrations. The addition of higher concentration of RG19 in binary solution was also found to have increased the overall performances of MFC, owing to electron mediating characteristics of its decolourized intermediates. However, the power density declined with the addition in dye concentration. Further increase of substrate loading by 3-folds (2.43 g/L) improved the decolourization efficiency approximately by 7%, but deteriorated power performance by 42%, to 63.40 ± 0.07 mW/m2. Increasing sulphate concentration from 20 to 400 mg/L had resulted in a high decolourization extent of binary dyes ascribed to sulphide-mediated dye degradation, whereas the power generation was reduced. The increase of sulphate to 800 mg/L led to decrease in decolourization and power density of the system. These outcomes deciphered the competitions of electrons between different electron acceptors in the anodic compartment. Moreover, the autocatalytic mechanism of RG19 decolourized intermediates, 1-amino-2-naphthol-3,6-disulphonate (1A2N36S) as electronophore was thoroughly unearthed. Detailed degradation pathways of dyes were proposed based on UV-Visible spectra and gas chromatograph-mass spectrometer (GC-MS) analyses. -
PublicationSustainable utilization of anthraquinone-rich Rheum officinale as electron shuttle in microbial fuel cell: Strategy for stimulating monohydric phenols degradation and bioelectricity generation( 2023-11-01)
;Tan S.M.In an aim to completely degrade refractory phenolic compounds for effective wastewater treatment, a sustainable strategy using anthraquinone-rich herbal plant contents as electron shuttles is presented. This study is the first attempt of treating four different chemical structures of monohydric phenols, while simultaneously generate low-carbon electricity in a microbial fuel cell. An electron shuttle-mediated strategy was introduced to investigate the effect of electron shuttle against the degradation of phenolic pollutants and bioelectricity generation, by employing Rheum officinale extract as electron shuttle. Results revealed that there was a two-fold increase in chemical oxygen demand (COD) removal, degradation extent of phenol and cresol isomers, output voltage and power density of MFC, compared to the mediator-free MFC system. The degradation of phenol yielded higher COD removal, degradation efficiency, output voltage and power generation over cresol isomers, with and without the application of electron shuttle. A complete removal of COD and phenol, with output voltage of 620.06 mV and power density of 252.49 mW/m2 were obtained. Phenol outperformed cresol isomers with regard to its sole activating hydroxy (−OH) group, lower dipole moment and higher electronic conductivity (8.53 mS/cm). Conversely, meta-cresol exhibited the lowest removal efficiency and power generation, ascribed to greater inductive influence of methyl group in meta position on the dissociation energy of the − OH group. Moreover, detection of the phenolic intermediates by gas chromatograph-mass spectrometer analysis was conducted, and detailed degradation pathways were presented. -
PublicationAdopting co-metabolism strategy for optimized biotreatment of ortho-hydroxytoluene and bioelectricity generation in microbial fuel cell: Transformation products and pathways( 2022-10-01)
;Tan S.M. ;Wong Y.S. ;Teoh T.P.Yap K.L.This study investigated the effects of carbon source availability and concentrations, external loads (Rload), and cathode conditions on the overall removal rate of ortho-hydroxytoluene and bioelectricity generation characteristics in anti-gravity flow microbial fuel cell (AGF-MFC) through co-metabolism approach. Sodium acetate outperformed sucrose, glucose and carbamide, and the optimum influent acetate concentration (1000 mg L−1) significantly enhanced the o-hydroxytoluene degradation by 13.41 % (98.71 %), output voltage by 15.14 % (609.25 mV) and power generation by 30.96 % (159.44 mW m−2). The results demonstrated that there were prominent differences in MFC performances under different Rload (p < 0.05). Different external load conditions resulted in varying electron transfer reactions, and thus affecting the removal efficiency and power responses of MFC system. A complete removal of o-hydroxytoluene and highest power density of 173.10 mW m−2, with a Chemical Oxygen Demand (COD) removal of 93.56 % were obtained with the Rload of 230 Ω, where the Rload approaches the cell design point. Hysteresis phenomenon was detected in the dynamic polarization during Rload variations. Moreover, it was observed that the removal efficiency of o-hydroxytoluene was significantly enhanced with aeration rate of 50 mL min−1, and dissolved oxygen concentration of 5.4 mg L−1. Conversely, higher aeration rate (400 mL min−1) had caused a decline of 26 % in power generation, ascribed to the limited active surface area for oxygen reduction reaction. Additionally, the degradation pathway of o-hydroxytoluene was proposed based on the identified intermediates. -
PublicationDiscovering the roles of electrode distance and configuration in dye degradation and electricity generation in photocatalytic fuel cell integrated electro-Fenton process( 2022-01-01)
;Thor S.H. ;Nordin N. ;Ong Y.P.Yap K.L.Photocatalytic fuel cell (PFC) integrated electro-Fenton (EF) system (PFC-EF system) was considered as an eco-friendly approach for dye degradation and electricity generation simultaneously. The modification on configuration of PFC-EF system was aimed to improve the dye degradation and power output. Effect of electrode distance on the efficiency of PFC-EF system was investigated as it was a crucial factor in the mass transfer of ions in PFC-EF system. Closer electrode distance reduced the resistance flow of ions and enhanced the mass transfer of ions between the electrodes in both PFC and EF, eventually yielded higher concentration of reactive species for removal of dye. Four different electrode configurations by varying the number of cathodes in PFC and EF were investigated to discover the most efficient operating configuration for this PFC-EF system. The dye decolourization rate was evaluated and compared by using pseudo-first order and second order in both PFC and EF system, respectively. Results revealed that single cathode PFC-EF system was the most effective configuration in dye degradation while double cathodes PFC-EF system was the optimal configuration to be used for power output. -
PublicationA sustainable photocatalytic fuel cell integrated photo-electro-Fenton hybrid system using KOH activated carbon felt cathodes for enhanced Amaranth degradation and electricity generation( 2022-07-01)
;Thor S.H. ;Ong Y.P.Yap K.L.Photo-electro-Fenton (PEF) process was integrated with photocatalytic fuel cell (PFC) through the connection of electrodes and the cathodes were responsible for the acceptance of electrons. In this study, potassium hydroxide (KOH) was used to activate the carbon felt (CF) to improve the oxygen reduction reaction reactivity on cathodes for effective PFC integrated PEF hybrid system (PFC-PEF system) in Amaranth removal and electricity generation simultaneously. The results revealed that KOH activated CF cathodes had improved the electro-generation of hydrogen peroxide in both PFC and PEF and contributed to decolourisation efficiencies of 99.25% (PFC) and 96.10% (PEF). The maximum power density (4.218 μW cm−2) achieved by KOH activated CF cathode was 22% higher than that of pristine CF. The results revealed that air flow rate of 1000 mL min−1 favoured the generation of more reactive species for effective Amaranth degradation under the dissolved oxygen enrichment condition. The highest decolourisation rates were respectively achieved in PFC (0.5965 h−1) and PEF (0.2919 L mg−1 h−1) at air flow rate of 1000 mL min−1. -
PublicationInfluence of leachate matrix on oxidation performance of ozonation and aops( 2022-12-15)
;Kow S.H. ;Wikurendra E.A.Handayani D.Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3 /H2 O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3 /PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3 /H2 O2 in reducing nitrogen-containing compounds.1 -
PublicationReactive Green 19 degradation using O3/S2 O8(2-) process: Intermediates and proposed degradation pathway( 2022-01-01)
;Mohd Razali N.A. ;Siti Nasuha Sabri ;Kow Su HuanSafya Abdul MalikThe massive drawbacks of conventional wastewater treatment have led to a demand investigation about new advanced wastewater treatment technology. The issue can be addressed via advanced oxidation processes (AOPs) as witnessed recently. Therefore, the objective of this study was to investigate the performance of ozone/persulfate ((Formula presented.)) process to assess its use as potential degradation of diazo dye which is Reactive Green 19 (RG19). In this work, efficiency, color, and COD removal were investigated over a range of initial pH, persulfate concentration and initial concentration of RG19. The amount of sodium persulfate ((Formula presented.)) was varied at different levels (20–100 mM) relative to precursor radical to assess the optimum usage of persulfate concentration for RG19 degradation. Evidence that RG19 could degrade efficiently had occurred at 100 mg/L, initial pH 9, 60 mM persulfate concentration was identified by FTIR and GC/MS analysis. The results revealed that RG19 could achieve complete decolorization easily as compared to mineralization. In addition, RG19 degradation pathway gave the best representation of level degradation. The GC/MS and FTIR results exhibited the proposed RG19 degradation pathway that involved the characteristic of sulfonic group, (Formula presented.) accompanied with (Formula presented.) became as an indicator of their structure broken down one by one. The degradation products such as oxalic acid, formic acids and others were analyzed and finally converted to carbon dioxide and water. The diazo dye structure itself aided with (Formula presented.) has its superior characteristic as an aid for the efficient degradation process.1 -
PublicationDiscovering the roles of electrode distance and configuration in dye degradation and electricity generation in photocatalytic fuel cell integrated electro-Fenton process( 2022-01-01)
;Thor S.H. ;Nordin N. ;Ong Yong PorYap Kea LeePhotocatalytic fuel cell (PFC) integrated electro-Fenton (EF) system (PFC-EF system) was considered as an eco-friendly approach for dye degradation and electricity generation simultaneously. The modification on configuration of PFC-EF system was aimed to improve the dye degradation and power output. Effect of electrode distance on the efficiency of PFC-EF system was investigated as it was a crucial factor in the mass transfer of ions in PFC-EF system. Closer electrode distance reduced the resistance flow of ions and enhanced the mass transfer of ions between the electrodes in both PFC and EF, eventually yielded higher concentration of reactive species for removal of dye. Four different electrode configurations by varying the number of cathodes in PFC and EF were investigated to discover the most efficient operating configuration for this PFC-EF system. The dye decolourization rate was evaluated and compared by using pseudo-first order and second order in both PFC and EF system, respectively. Results revealed that single cathode PFC-EF system was the most effective configuration in dye degradation while double cathodes PFC-EF system was the optimal configuration to be used for power output.3