Now showing 1 - 8 of 8
  • Publication
    Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: An overview
    ( 2023-05-01)
    Adam H.
    ;
    ; ; ; ; ;
    Fakhri M.A.
    ;
    Subramaniam S.
    ;
    Chen Y.
    ;
    Sasidharan S.
    ;
    Wu Y.S.
    Background: Microfluidic devices have evolved into low-cost, simple, and powerful analytical tool platforms. Herein, an electrochemically-based microfluidic nanobiosensor array for monoplex and multiplex detection of physiologically relevant analytes is reviewed. Unlike other analyte detection methods, microfluidics-based embedded electrochemical nanobiosensors are portable, custom electrochemical readers for signal reading. Methods: Microfluidic devices and electrochemical sensors can be integrated into monoplex or multiplex systems. The integrated system is simple to use and sensitive, and so has great potential as a powerful tool for profiling immune-mediated treatment responses in real time. It may also be developed further as a point-of-care diagnostic device for conducting near-patient tests using biological samples. Therefore, using mutiplex analysis, a biosensor array may detect multiple analytes in a sample solution and provide different outputs for each analyte. A microfluidic electrochemical nanobiosensor, for example, can detect urine glucose, lactate, and uric acid. The microfluidic array of integrated nanobiosensors and electrochemical sensors enables fast and cost-effective selection of high-quality and statistically significant diagnostic data at the point of care. The multiplex analytical test is an important molecular tool for academic research as well as clinical diagnosis. Although key approaches for analysing numerous analytes have been developed, none of them are suitable for point-of-care diagnostics, especially in situations with limited resources. Significant findings: In this study, monoplex and multiplex microfluidic assays for rapid measurement of single and multiple analytes at the point of care are presented. Since this test can analyse both single and multiple analytes, it is exceptionally specific, easy to use, and inexpensive. The ability of integrated electrochemical-based microfluidic devices with single channel and multiple channels systems to perform monoplex and multiplex analysis simultaneously and independently is the novelty of this review.
      2
  • Publication
    Selective detection of amyloid fibrils by a dipole moment mechanism on dielectrode – Structural insights by in silico analysis
    ( 2023-03-01)
    Adam H.
    ;
    ;
    Kumarevel T.
    ;
    ;
    Adam T.
    ;
    ;
    Subramaniam S.
    ;
    ;
    Chen Y.
    Amyloid fibrils are associated with different neurodegenerative diseases, a final product of several protein aggregation pathways. Parkinson's disease is a type of amyloidosis, characterized by the accumulation and propagation of amyloid fibrils of alpha-synuclein. The detection of fibrils at low concentrations is critical for the diagnosis of Parkinson's disease. We report a novel technique for the selective detection of amyloid fibrils through a dipole moment on a dielectrode surface. A sensitive dielectrode sensor for detecting aggregation of alpha synuclein and works by interacting an antibody on two-electrode surface functionalized gold interdigitated electrode. For the physical characterization of the sensing surface and finger electrodes, high-power microscope, scanning electron microscope, and 3D-profilormeter were used. Electrical characterization was performed on the sensing surface by using Keithley 6487 picoammeter. Based on the stability analysis with various electrolytes solutions, the sensor was found to be stable from pH 3. Further, under optimal circumstances, a linear range of alpha synuclein fibril detection was from 100 aM to 100 pM [y = 5E-06x + 5E-06; R² = 0.9724], and the limit of detection was estimated to be 100 aM based on S/N = 3. This study was further anchored by molecular docking analysis with synuclein peptide (47−56). We predict that advancements in this direction will assist in clarifying the complex process posed by Parkinson's disease.
      2
  • Publication
    Failure analysis on silicon semiconductor device materials: optical and high-resolution microscopic assessments
    ( 2022-11-01) ;
    Ramanathan S.
    ;
    Mohd Yasin M.N.
    ;
    Shapiai Razak M.I.
    ;
    Ismail Z.H.
    ;
    Salleh S.
    ;
    ;
    Malarvili M.B.
    ;
    Subramaniam S.
    Defects of silicon (Si) semiconductor epilayers are crucial to be identified at laboratory environs. The identification of failure and its rectification at laboratory settings is essential for large-scaling manufacturing of narrowed down semiconductor devices. This research documented the inspection, identification and the solution for defects found in the Si semiconductor epilayers, fabricated by a simple and conventional photolithography technique, with the integration of metal oxide nanomaterial, zinc oxide (ZnO). The semiconductor epilayers, Si wafer, Si oxide and ZnO coated SiO2 layer were formed and examined. Optical microscope images [high power microscope (HPM) and 3D profilometer] reveal smooth surface of semiconductor epilayers development through thermal oxidation and photolithography techniques. High power ultraviolet-visible (UV-Vis) justified the accuracy of wet thermal oxidation by examining the thickness of oxide layer on Si wafer at 3837.3 Ã…. The X-ray diffraction (XRD) analysis of sol-gel synthesized ZnO affirmed the hexagonal crystalline state and its nanoscale size at 54 nm. Field emission scanning electron microscopy (FESEM) has shown the insight of Si epilayer morphology with its elemental composition, which provides details of foreign substances on semiconductor surface. ZnO deposited Si epilayer was prepared through lamella preparation, prior to the cross-sectional field emission transmission electron microscopy (FETEM) analysis of the semiconductor, which revealed the uniformity of fabrication and ZnO distribution at Si epilayer. Failure analysis reported several defects on the Si epilayers in the state of patches and accumulation of impurities. The potential cause of the defects and the respective solutions are discussed as the accuracy and handling must be ensured throughout the fabrication process, to develop a flawless semiconductor for high performance applications.
      2
  • Publication
    Failure analysis on silicon semiconductor device materials: optical and high-resolution microscopic assessments
    ( 2022) ;
    Santheraleka Ramanathan
    ;
    ;
    Mohd Ibrahim Shapiai Razak
    ;
    Zool Hilmi Ismail
    ;
    Syahrizal Salleh
    ;
    ;
    Sreeramanan Subramaniam
    ;
    M.B. Malarvili
    Defects of silicon (Si) semiconductor epilayers are crucial to be identified at laboratory environs. The identification of failure and its rectification at laboratory settings is essential for large-scaling manufacturing of narrowed down semiconductor devices. This research documented the inspection, identification and the solution for defects found in the Si semiconductor epilayers, fabricated by a simple and conventional photolithography technique, with the integration of metal oxide nanomaterial, zinc oxide (ZnO). The semiconductor epilayers, Si wafer, Si oxide and ZnO coated SiO2 layer were formed and examined. Optical microscope images [high power microscope (HPM) and 3D profilometer] reveal smooth surface of semiconductor epilayers development through thermal oxidation and photolithography techniques. High power ultraviolet-visible (UV-Vis) justified the accuracy of wet thermal oxidation by examining the thickness of oxide layer on Si wafer at 3837.3 Ã…. The X-ray diffraction (XRD) analysis of sol-gel synthesized ZnO affirmed the hexagonal crystalline state and its nanoscale size at 54 nm. Field emission scanning electron microscopy (FESEM) has shown the insight of Si epilayer morphology with its elemental composition, which provides details of foreign substances on semiconductor surface. ZnO deposited Si epilayer was prepared through lamella preparation, prior to the cross-sectional field emission transmission electron microscopy (FETEM) analysis of the semiconductor, which revealed the uniformity of fabrication and ZnO distribution at Si epilayer. Failure analysis reported several defects on the Si epilayers in the state of patches and accumulation of impurities. The potential cause of the defects and the respective solutions are discussed as the accuracy and handling must be ensured throughout the fabrication process, to develop a flawless semiconductor for high performance applications.
      7  10
  • Publication
    Failure analysis on silicon semiconductor device materials: optical and high-resolution microscopic assessments
    ( 2022-11-01) ;
    Ramanathan S.
    ;
    Mohd Yasin M.N.
    ;
    Shapiai Razak M.I.
    ;
    Ismail Z.H.
    ;
    Salleh S.
    ;
    ;
    Malarvili M.B.
    ;
    Subramaniam S.
    Defects of silicon (Si) semiconductor epilayers are crucial to be identified at laboratory environs. The identification of failure and its rectification at laboratory settings is essential for large-scaling manufacturing of narrowed down semiconductor devices. This research documented the inspection, identification and the solution for defects found in the Si semiconductor epilayers, fabricated by a simple and conventional photolithography technique, with the integration of metal oxide nanomaterial, zinc oxide (ZnO). The semiconductor epilayers, Si wafer, Si oxide and ZnO coated SiO2 layer were formed and examined. Optical microscope images [high power microscope (HPM) and 3D profilometer] reveal smooth surface of semiconductor epilayers development through thermal oxidation and photolithography techniques. High power ultraviolet-visible (UV-Vis) justified the accuracy of wet thermal oxidation by examining the thickness of oxide layer on Si wafer at 3837.3 Ã…. The X-ray diffraction (XRD) analysis of sol-gel synthesized ZnO affirmed the hexagonal crystalline state and its nanoscale size at 54 nm. Field emission scanning electron microscopy (FESEM) has shown the insight of Si epilayer morphology with its elemental composition, which provides details of foreign substances on semiconductor surface. ZnO deposited Si epilayer was prepared through lamella preparation, prior to the cross-sectional field emission transmission electron microscopy (FETEM) analysis of the semiconductor, which revealed the uniformity of fabrication and ZnO distribution at Si epilayer. Failure analysis reported several defects on the Si epilayers in the state of patches and accumulation of impurities. The potential cause of the defects and the respective solutions are discussed as the accuracy and handling must be ensured throughout the fabrication process, to develop a flawless semiconductor for high performance applications.
      2
  • Publication
    Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: An overview
    ( 2023-05-01)
    Adam H.
    ;
    ; ; ; ; ;
    Fakhri M.A.
    ;
    Subramaniam S.
    ;
    Chen Y.
    ;
    Sasidharan S.
    ;
    Wu Y.S.
    Background: Microfluidic devices have evolved into low-cost, simple, and powerful analytical tool platforms. Herein, an electrochemically-based microfluidic nanobiosensor array for monoplex and multiplex detection of physiologically relevant analytes is reviewed. Unlike other analyte detection methods, microfluidics-based embedded electrochemical nanobiosensors are portable, custom electrochemical readers for signal reading. Methods: Microfluidic devices and electrochemical sensors can be integrated into monoplex or multiplex systems. The integrated system is simple to use and sensitive, and so has great potential as a powerful tool for profiling immune-mediated treatment responses in real time. It may also be developed further as a point-of-care diagnostic device for conducting near-patient tests using biological samples. Therefore, using mutiplex analysis, a biosensor array may detect multiple analytes in a sample solution and provide different outputs for each analyte. A microfluidic electrochemical nanobiosensor, for example, can detect urine glucose, lactate, and uric acid. The microfluidic array of integrated nanobiosensors and electrochemical sensors enables fast and cost-effective selection of high-quality and statistically significant diagnostic data at the point of care. The multiplex analytical test is an important molecular tool for academic research as well as clinical diagnosis. Although key approaches for analysing numerous analytes have been developed, none of them are suitable for point-of-care diagnostics, especially in situations with limited resources. Significant findings: In this study, monoplex and multiplex microfluidic assays for rapid measurement of single and multiple analytes at the point of care are presented. Since this test can analyse both single and multiple analytes, it is exceptionally specific, easy to use, and inexpensive. The ability of integrated electrochemical-based microfluidic devices with single channel and multiple channels systems to perform monoplex and multiplex analysis simultaneously and independently is the novelty of this review.
      4
  • Publication
    Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: An overview
    ( 2023-05-01)
    Adam H.
    ;
    ; ;
    Adam T.
    ;
    ; ;
    Fakhri M.A.
    ;
    Subramaniam S.
    ;
    Chen Y.
    ;
    Sasidharan S.
    ;
    Wu Y.S.
    Background: Microfluidic devices have evolved into low-cost, simple, and powerful analytical tool platforms. Herein, an electrochemically-based microfluidic nanobiosensor array for monoplex and multiplex detection of physiologically relevant analytes is reviewed. Unlike other analyte detection methods, microfluidics-based embedded electrochemical nanobiosensors are portable, custom electrochemical readers for signal reading. Methods: Microfluidic devices and electrochemical sensors can be integrated into monoplex or multiplex systems. The integrated system is simple to use and sensitive, and so has great potential as a powerful tool for profiling immune-mediated treatment responses in real time. It may also be developed further as a point-of-care diagnostic device for conducting near-patient tests using biological samples. Therefore, using mutiplex analysis, a biosensor array may detect multiple analytes in a sample solution and provide different outputs for each analyte. A microfluidic electrochemical nanobiosensor, for example, can detect urine glucose, lactate, and uric acid. The microfluidic array of integrated nanobiosensors and electrochemical sensors enables fast and cost-effective selection of high-quality and statistically significant diagnostic data at the point of care. The multiplex analytical test is an important molecular tool for academic research as well as clinical diagnosis. Although key approaches for analysing numerous analytes have been developed, none of them are suitable for point-of-care diagnostics, especially in situations with limited resources. Significant findings: In this study, monoplex and multiplex microfluidic assays for rapid measurement of single and multiple analytes at the point of care are presented. Since this test can analyse both single and multiple analytes, it is exceptionally specific, easy to use, and inexpensive. The ability of integrated electrochemical-based microfluidic devices with single channel and multiple channels systems to perform monoplex and multiplex analysis simultaneously and independently is the novelty of this review.
      2
  • Publication
    Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: An overview
    ( 2023-05-01)
    Adam H.
    ;
    ; ;
    Adam T.
    ;
    ; ;
    Fakhri M.A.
    ;
    Subramaniam S.
    ;
    Chen Y.
    ;
    Sasidharan S.
    ;
    Wu Y.S.
    Background: Microfluidic devices have evolved into low-cost, simple, and powerful analytical tool platforms. Herein, an electrochemically-based microfluidic nanobiosensor array for monoplex and multiplex detection of physiologically relevant analytes is reviewed. Unlike other analyte detection methods, microfluidics-based embedded electrochemical nanobiosensors are portable, custom electrochemical readers for signal reading. Methods: Microfluidic devices and electrochemical sensors can be integrated into monoplex or multiplex systems. The integrated system is simple to use and sensitive, and so has great potential as a powerful tool for profiling immune-mediated treatment responses in real time. It may also be developed further as a point-of-care diagnostic device for conducting near-patient tests using biological samples. Therefore, using mutiplex analysis, a biosensor array may detect multiple analytes in a sample solution and provide different outputs for each analyte. A microfluidic electrochemical nanobiosensor, for example, can detect urine glucose, lactate, and uric acid. The microfluidic array of integrated nanobiosensors and electrochemical sensors enables fast and cost-effective selection of high-quality and statistically significant diagnostic data at the point of care. The multiplex analytical test is an important molecular tool for academic research as well as clinical diagnosis. Although key approaches for analysing numerous analytes have been developed, none of them are suitable for point-of-care diagnostics, especially in situations with limited resources. Significant findings: In this study, monoplex and multiplex microfluidic assays for rapid measurement of single and multiple analytes at the point of care are presented. Since this test can analyse both single and multiple analytes, it is exceptionally specific, easy to use, and inexpensive. The ability of integrated electrochemical-based microfluidic devices with single channel and multiple channels systems to perform monoplex and multiplex analysis simultaneously and independently is the novelty of this review.
      2