Now showing 1 - 2 of 2
  • Publication
    Aptamer-antibody dual probes on single-walled carbon nanotube bridged dielectrode: Comparative analysis on human blood clotting factor
    ( 2020-05-15)
    Yao J.
    ;
    Li S.
    ;
    Zhang L.
    ;
    Yang Y.
    ;
    ;
    Lakshmipriya T.
    ;
    Zhou Y.
    Haemophilia is a blood clotting disorder known as ‘Christmas disease’ caused when the blood has defect with the clotting factor(s). Bleeding leads various issues, such as chronic pain, arthritis and a serious complication during the surgery. Identifying this disease is mandatory to take the necessary treatment and maintains the normal clotting. It has been proved that the level of factor IX (FIX) is lesser with haemophilia patient and the attempt here is focused to quantify FIX level by interdigitated electrode (IDE) sensor. Single-walled carbon nanotube (SWCNT) was utilized to modify IDE sensing surface. On this surface, dual probing was evaluated with aptamer and antibody to bring the possible advantages. The detection limit with antibody was found to be 1 pM, while aptamer shows 100 fM. Further, a fine-tuning was attempted with sandwich pattern of aptamer-FIX-antibody and antibody-FIX-aptamer and compared. Specific elevation of detection with 10 folds was noticed and displayed the detection at 100 f. in both sandwich patterns. In addition, FIX was detected in the diluted human serum by aptamer-FIX-antibody sandwich, it was found that FIX detected from the dilution factor 1:640. A novel demonstration is with higher discrimination against other clotting factors, XI and VII.
      2
  • Publication
    Conductometric immunosensor for specific Escherichia coli O157:H7 detection on chemically funcationalizaed interdigitated aptasensor
    ( 2024)
    Muhammad Nur Afnan Uda
    ;
    Alaa Kamal Yousif Dafhalla
    ;
    Thikra S. Dhahi
    ;
    ; ;
    Asral Bahari ambek
    ;
    ; ;
    Nur Hulwani Ibrahim
    ;
    Escherichia coli O157:H7 is a strain of Escherichia coli known for causing foodborne illness through the consumption of contaminated or raw food. To detect this pathogen, a conductometric immunosensor was developed using a conductometric sensing approach. The sensor was con-structed on an interdigitated electrode and modified with a monoclonal anti-Escherichia coli O157: H7 aptamer. A total of 200 electrode pairs were fabricated and modified to bind to the target molecule replica. The binding replica, acting as the bio-recognizer, was linked to the electrode surface using 3-Aminopropyl triethoxysilane. The sensor exhibited excellent performance, detecting Escherichia coli O157:H7 in a short time frame and demonstrating a wide detection range of 1 fM to 1 nM. Concentrations of Escherichia coli O157:H7 were detected within this range, with a minimum detection limit of 1 fM. This innovative sensor offers simplicity, speed, high sensitivity, selectivity, and the potential for rapid sample processing. The potential of this pro-posed biosensor is particularly beneficial in applications such as drug screening, environmental monitoring, and disease diagnosis, where real-time information on biomolecular interactions is crucial for timely decision-making and where cross-reactivity or interference may compromise the accuracy of the analysis.
      4  24