Options
Muzammil Jusoh
Preferred name
Muzammil Jusoh
Official Name
Muzammil, Jusoh
Alternative Name
Jusoh, M.
Jusoh, Muzammil
Jusoh, Muzammi
Jusoh, Muzammir
Main Affiliation
Scopus Author ID
24483755700
Researcher ID
Z-1156-2019
Now showing
1 - 10 of 27
-
PublicationReconfigurable pattern patch antenna for mid-band 5G: A review( 2022-01-01)
;Isa S.R. ;Nebhen J. ;Kamarudin M.R. ;Abbasi Q.H.Soh Ping JackNew requirements in communication technologies make it imperative to rehash conventional features such as reconfigurable antennas to adapt with the future adaptability advancements. This paper presents a comprehensive review of reconfigurable antennas, specifically in terms of radiation patterns for adaptation in the upcoming Fifth Generation (5G) New Radio frequency bands. They represent the key of antenna technology for materializing a high rate transmission, increased spectral and energy efficiency, reduced interference, and improved the beam steering and beam shaping, thereby land a great promise for planar antennas to boost the mid-band 5G. This review begins with an overview of the underlying principals in reconfiguring radiation patterns, followed by the presentations of the implemented innovative antenna topologies to suit particular advanced features. The various adaptation techniques of radiation pattern reconfigurable planar antennas and the understanding of its antenna design approaches has been investigated for its radiation pattern enhancement. A variety of design configurations have also been critically studied for their compatibilities to be operated in the mid-band communication systems. The review provides new insights on pattern reconfigurable antenna where such antennas are categorized as beam steering antenna and beam shaping antennas where the operation modes and purposes are clearly investigated. The review also revealed that for mid-band 5G communication, the commonly used electronic switching such as PIN diodes have sufficient isolation loss to provide the required beam performance. -
PublicationMulti-Mode Yagi Uda Patch Array Antenna With Non-Linear Inter-Parasitic Element Spacing( 2023-01-01)
;Isa S.R. ;Kamarudin M.R.Alomainy A.A low-profile and broad steerable patch array antenna is presented. The improvement of the multi-directional functions from the broadside is very limited for the patch array antenna. In this work, the number of directional beams is enhanced by 40% using a novel approach, inter-parasitic element expansion technique and adopted only four PIN diode switches. Results in simulation and measurement have verified that the patch parasitic array antenna is capable -of generating seven beam patterns directed towards -52°, -30°, -10°, 0°, +10°, +30°, and +52° at the xz-plane. Applying the inter-parasitic element spacing's optimization and minimizing the switching circuitry using four RF PIN diodes on the parasitic elements have contributed to the gain achievement of more than 7 dBi. -
PublicationHigh Gain Beam-Steerable Reconfigurable Antenna using Combined Pixel and Parasitic Arrays( 2021-01-12)
;Subramaniam D. ;Soh Ping Jack ;Alaydrus M. ;Hodgkinson C.J. ;Podilchak S.K.Schreurs D.This paper presents a pattern reconfigurable antenna for wide beam steering applications at the 9.5 GHz band. The beam steering performance is based on the combination of a Yagi-Uda antenna and its complimenting top pixel structure. The integration of this driven antenna element with its parasitic elements is capable of providing steering of up to ±40° (at -40°, 0° and +40°). However, with the added combination of a reconfigurable pixel array on top, the steering angle of the antenna can then be improved to -45°, 0° and +45°, and with measured gains of between 6.5 and 7.5 dBi. A factor critical in enabling the added beam steering capability is the control of the mutual coupling within the bottom antenna array and the top pixel layer. Results indicate that the proposed antenna could be useful for X-Band radar and other applications that require beam steering. -
PublicationA multilayered acoustic signal generator for low power energy harvesting( 2017-10-10)
;Awal M.R.Kamarudin M.R.This paper presents the design and analysis of a multilayer cantilever to harvest vibration energy by generating acoustic signal. To do so, a five layer configuration is used to design the cantilever. Lead Zirconate Titanate (PZT-8), Stainless Steel 405 Annealed, Aluminum and Zinc Oxide are used to develop the layers. Water is used as the medium to analyze the sound propagation pattern. Sound Pressure Level, displacements and electric potential of the cantilever are analyzed along with other parameters. From the results, it is evident that, the proposed cantilever can propagate sound within a range of 78.7 dB to 73.4 dB in a 50 mm spherical distance. -
PublicationLow-Profile and Wider-Angle Beam Tilting Parasitic Array Resonator Antenna with Optimized Deflected Ground Plane on FR-4 Substrate( 2023-04-01)
;Mohd Zainudin N.A.F.Mohamad M.K.A low-profile and wide-angle radiation pattern reconfigurable antenna is designed, analyzed, and fabricated for wireless sensor network (WSN) applications, which operate at a 2.5-GHz frequency. This work aims to minimize the number of switches and optimize the parasitic size and ground plane to achieve a steering angle of more than 30° using a low cost-high loss FR-4 substrate. The radiation pattern reconfigurability is achieved by introducing four parasitic elements surrounding a driven element. In this work, the single driven element is fed by a coaxial feed, while other parasitic elements are integrated with the RF switches on the FR-4 as the substrate with dimensions of 150 × 100 mm (1.67 × 2.5 λo). The RF switches of the parasitic elements are surface mounted on the substrate. By truncating and modifying the ground plane, the beam steering can be achieved at more than 30° on the xz plane. Additionally, the proposed antenna can attain an average tilt angle of more than 10° on the yz plane. The antenna is also capable of attaining other important results, such as a fractional bandwidth of 4% at 2.5 GHz and an average gain of 2.3 dBi for all configurations. By adopting the ON/OFF condition on the embedded RF switches, the beam steering can be controlled at a certain angle, thus increasing the tilting angle of the wireless sensor networks. With such a good performance, the proposed antenna has high potential to serve as a base station in WSN applications. -
PublicationRadiation Pattern Reconfigurable MIMO Antenna with EBG for Improved Steering Performance( 2023-01-01)
;Gopalakrishnan J.B.Kavitha K.This paper presents a radiation pattern reconfigurable (RPR) multiple-input-multiple-output (MIMO) antenna with an electromagnetic band gap (EBG) for improved steering performance. The designed RPR-MIMO operates at 3.5 GHz with S11 < -10 dB, S21 < -15 dB, steered angle of more than 19° and a minimum average gain of 5 dBi at all steered directions. The proposed EBG structure improved the steering angle that is affected when the RPR is deployed as the MIMO. -
PublicationDesign of Reconfigurable Antenna for RFID System( 2021-07-26)
;Renukka Sivakumar ;Soh Ping Jack ;Salem Al-Bawri S. ;Jayaprakasam S.Saluja N.This paper proposes a reconfigurable antenna for RFID system which can operate between 860MHz to 960MHz frequency that belongs to ultra-high frequency (UHF) band used in Malaysia with the center frequency of 910MHz. One rectangular slot and two triangle-shaped slots are used in designing this antenna. A good circular polarization obtained from the slotted structure along the diagonal axis in the design. RF pin diodes are used as the switching mechanism of the antenna. However, in this work to proof the concept of switching mechanism, copper pins are used as artificial switches. Parasitic elements are deployed on the right and left side of the driven element to assist the radiation pattern reconfiguration. Overall, the proposed antenna able to steer the beam at approximately at -30 , -16 , and 10 with peak gain of 3.2dB and average gain of 2.5dB. With this result, overall coverage of UHF RFID reader antenna could be improved. -
PublicationFlexible Co-Planar Waveguide (CPW)-Fed Y-Shaped Patch UWB Antenna for Off-Body Communication( 2020-03-18)
;Kassim S. ;Soh Ping Jack ;Abdulmalek M. ;Jamaluddin M.H. ;Sabli N.S. ;Yassin M.N.Ismail N.This paper intends to design an Ultra-Wideband (UWB) antenna for future Internet of Things (IoT) applications for off-body Wireless Body Area Networks (WBAN) communication. An antenna based on the Y-shaped patch fed using co-planar waveguide (CPW) line, with a full ground plane is designed. It is implemented on two different substrates, namely a 5mm thick Rogers RO4350B and a 5-mm-thick felt textile. Parametric analysis of antenna is performed by changing its critical dimensions and monitoring parameters such as gain, bandwidth, efficiency, radiation pattern when using both substrates. Besides that, the bending effects towards reflection coefficient and radiation patterns are also studied. The final patch size with the Y-shaped slot is 36 × 40 mm2 for both substrates. The antenna is capable of providing coverage for the bands from 8 to 10 GHz. Finally, the antenna designed on RO4350B substrate outperforms the antenna designed on felt by about four times in terms of bandwidth, with 3.3 GHz (7.7-11 GHz). -
PublicationWearable UHF RFID Antenna based Metamaterial( 2021-01-01)
;Khamaruzaman N.S. ;Subahir S.Jamaluddin M.H.This paper presents the development a wearable RFID application that is flexible, compact, low-cost, and suitable for the human body. The study's main goal is to design, build, and test a small and flexible RFID wristband tag antenna with UHF RFID operating frequency at 910 MHz. The result shows a good radiation pattern and an almost ideal VSWR which 1.09. Thus, a wearable UHF RFID tag antenna is designed with a gain of -11.87 dB for bending analysis. The tag features a meander dipole antenna with two square split-ring resonators (SRR) cells. A meander dipole antenna with two square split-ring resonators (SRR) cells is featured on the tag. It's built on a 0.277mm thick photo paper substrate with a dielectric constant of 3.2 and a loss tangent of 0.05. The proposed antenna is then combined with an RFID tag (NXP SL3S1213 UCODE G2iL chip) with an impedance of 23-j224 to evaluate its performance in terms of reflection coefficient, antenna gain, and maximum reading range. The overall size of the antenna tag dimensions is 117 mm × 26 mm.1 12 -
PublicationGain Enhancement of Rectangular Dielectric Resonator Antenna Using Air Gap( 2023-10-06)
;Shanmuka Rooban GunasekaranSaravanan Nathan LurudusamyThis paper presents a gain enhanced rectangular dielectric resonator antenna (DRA) using air gap. The air gap placed under the dielectric resonator antenna and above the ground plane. A gain of 6.605 dBi obtained from the DRA with air gap while gain of 5.956 dBi is achieved by DRA without air gap. The size of the antenna is approximately 50 mm by 40 mm, thus it can be considered a compact design. This antenna designed using Rogers RO4003 substrate and the DRA material is Eccostock HIK. All the design and simulation results are conducted using CST Studio Suite 2019 software. Based on the result, it shows that the antenna operates with reflection coefficient of less than -10 dB at the desired operating frequency range, centered at 3.5 GHz. The inclusion of air gap proved that it can enhance the gain value of the DRA.2 3