Options
Mohd Najib Mohd Yasin
Preferred name
Mohd Najib Mohd Yasin
Official Name
Mohd Najib , Mohd Yasin
Alternative Name
M. Yasin, M. Najib
Yasin, Mohd Najib
Yasin, Mohd Najib M.
Yasin, M. N.Mohd
Mohd Yasin, M. N.
Main Affiliation
Scopus Author ID
57210314287
Researcher ID
AAQ-6242-2021
Now showing
1 - 6 of 6
-
PublicationSwitchable Beam Antenna with Five Planar Element using PIN Diode in Elevation Plane( 2020-09-28)
;Adan F.H. ;Alaydrus M. ;Awal M.R. ;Alomainy A. ;Kamarudin M.R.Majid H.A.This work focuses on the switchable beam parasitic patch antenna for the point to point communication system. This concept gives more flexibility due to their ability to modify the radiation and providing multiple functionalities. This work focuses on two points directly to minimize the number of PIN Diode and to maximize its reconfiguration capabilities. First, the concept of two parasitic element is addressed. The mutual coupling effect between both driven and parasitic has manage to steer the beam to-28{\mathrm{o}}, \ 0{\mathrm{o}} and +28o different angles in a single layer. The design consists of four parasitic elements with full ground and four pin diode switch HPND-4005, five different directions have been reached which are-450,-30{\mathrm{o}}, \ 0{\mathrm{o}}+30{\mathrm{o}} and +450. The parasitic patch antenna has achieved high gain of 8. 92dBi at 5.8 GHz with the beam ability to steer unti145o for both side of the parasitic element. -
PublicationBending Assessment of Dual-band Split Ring-shaped and Bar Slotted All-Textile Antenna for Off-body WBAN/WLAN and 5G Applications( 2020-09-28)
;Mashaghba H.A. ;Soh Ping Jack ;Abdulmalek M.This paper presents a dual-band split ring-shaped and bar slotted textile antenna for potential WBAN/WLAN and 5G applications. The antenna is made using textiles and features a full ground plane to possibly alleviate coupling to the human body. The overall size of the antenna is 70 x 70 mm2, with a patch sized at 47.2 x 31 mm2 0.472 \lambda \times 0.031 \lambda. The antenna is made using ShieldIt Super as its conductive textile and felt as its substrate. To enable its dual-band resonance at 2.45 and 3.5 GHz a split ring-shaped and bar slots are integrated onto the patch. The proposed antenna is evaluated when bent under different radii and at different axes to estimate its performance in terms of reflection coefficient, bandwidth, efficiency and gain. A 10-dB impedance bandwidth of 57 % or 135 MHz (from 2.39 to 2.52 GHz) and 70 % or 240 MHz (from 3.45 to 3.56 GHz) are obtained when evaluated in the planar /bent configuration. The maximum realized gain is 6 dBi for at 3.5 GHz. These performances indicate that the antenna proposed in this work can be potentially improved for applications in WBAN/WLAN and 5G bands. -
PublicationDesign of Reconfigurable Antenna for RFID System( 2021-07-26)
;Renukka Sivakumar ;Soh Ping Jack ;Salem Al-Bawri S. ;Jayaprakasam S.Saluja N.This paper proposes a reconfigurable antenna for RFID system which can operate between 860MHz to 960MHz frequency that belongs to ultra-high frequency (UHF) band used in Malaysia with the center frequency of 910MHz. One rectangular slot and two triangle-shaped slots are used in designing this antenna. A good circular polarization obtained from the slotted structure along the diagonal axis in the design. RF pin diodes are used as the switching mechanism of the antenna. However, in this work to proof the concept of switching mechanism, copper pins are used as artificial switches. Parasitic elements are deployed on the right and left side of the driven element to assist the radiation pattern reconfiguration. Overall, the proposed antenna able to steer the beam at approximately at -30 , -16 , and 10 with peak gain of 3.2dB and average gain of 2.5dB. With this result, overall coverage of UHF RFID reader antenna could be improved. -
PublicationSmart IoT Flood Monitoring System( 2019-12-16)
;Binti Zahir S. ;Ehkan P. ;Abdul Wahab Y. ;Hambali N.A.M. ;Ali N. ;Bakhit A.S. ;Husin F.Jamaludin R.Flood is one of the natural disasters that cannot be avoided. It happens too fast and affected so many lives and properties. Before this, most of the existing system that has been developed are only focus on certain areas. Other than that, majority of the public cannot monitor and have no idea when the flood going to be happened since they do not have any information and data about the weather condition. By having Smart IoT Flood Monitoring System, this will solve all the drawbacks of the existing system. The proposed system is suitable for cities and village areas. Furthermore, if the public has an internet access, they can monitor what is happening and predict if there is any upcoming flood at the web server. The proposed system is a low cost in design and easy for maintenance. This project will update the water level at the web server and the system will issue an alert signal to the citizens for evacuation so that fast necessary actions can be taken. -
PublicationMobile Green E-Waste Management Systems using IoT for Smart Campus( 2021-07-26)
;Ong B.T.Hammood D.A.This paper presents the design and development of mobile "green"electronic waste (e-waste) management systems using Internet of Things (IoT) for smart campus. The system uses Raspberry Pi 3 Model B v1.2 microcontroller for monitoring e-waste object detection, e-waste count, and bin percentage level, respectively. TensorFlow Lite application programming interface (API) is used to run Single Shot Multibox Detector (SSD)Lite-MobileNet-v2 model trained on Microsoft Common Objects in Context (MSCOCO) dataset for e-waste object detection in image. All the monitoring data are stored and retrieved in ThingSpeak cloud platform using Hypertext Transfer Protocol (HTTP) and Message Queuing Telemetry Transport (MQTT) protocol over the Internet and displayed via interactive Android-based mobile user interface (UI). Furthermore, automatic e-mail notification will be sent to waste collector for bin collection whenever e-waste bin percentage level is greater than predetermined threshold value of 80% full.1 -
Publication5G Millimeter Wave Wearable Antenna: State-Of-the-Art and Current Challenges( 2021-01-01)
;Mashagba H.A. ;Yahaya N.Z. ;Jamaluddin M.H.Abdulmalek M.Fifth Generation (5G) is the next evolution of mobile communication that will provide seamless and massive high speed connectivity to the society. Paralleled with the rise of 5G, it is foreseen that wearable devices particularly wearable antenna will be the significant end node for wearable devices in Millimeter Wave (mmWave) frequency bands. Thus, this paper discusses the new development of the 5G sub-6 GHz and mmWave wearable antenna, introduces the research results of the 5G mmWave wearable antenna in recent years, and addresses the key challenges in the development trend of the development trend of the 5G mmWave wearable antenna.1