Options
Mohd Arif Anuar Mohd Salleh
Preferred name
Mohd Arif Anuar Mohd Salleh
Official Name
Mohd Arif Anuar, Mohd Salleh
Alternative Name
Mohd Salleh, Mohd Arif Anuar
Salleh, Mohd A.A.
Salleh, M. A.A.Mohd
Mohd Salleh, M. A.A.
Salleh, M. A.A.M.
Mohd Salleh, M. M.A.
Main Affiliation
Scopus Author ID
55543476900
Researcher ID
C-3386-2018
Now showing
1 - 10 of 20
-
PublicationPerformance of Sn-3.0Ag-0.5Cu composite solder with kaolin geopolymer ceramic reinforcement on microstructure and mechanical properties under isothermal ageing( 2021)
;Nur Syahirah Mohamad Zaimi ;Andrei Victor Sandu ;Petrica VizureanuMohd Izrul Izwan RamliThis paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder. -
PublicationStrength development and elemental distribution of Dolomite/Fly Ash geopolymer composite under elevated temperature( 2020)
;Emy Aizat Azimi ;Petrica Vizureanu ;Andrei Victor Sandu ;Jitrin Chaiprapa ;Sorachon YoriyaIkmal Hakem AzizA geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat. -
PublicationStrength development and elemental distribution of Dolomite/Fly Ash geopolymer composite under elevated temperature( 2020)
;Emy Aizat Azimi ;Petrica Vizureanu ;Jitrin Chaiprapa ;Sorachon Yoriya ;Andrei Victor SanduIkmal Hakem AzizA geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat. -
PublicationPerformance of Sn-3.0Ag-0.5Cu composite solder with Kaolin geopolymer ceramic reinforcement on microstructure and mechanical properties under isothermal ageing( 2021)
;Nur Syahirah Mohamad Zaimi ;Andrei Victor Sandu ;Petrica VizureanuMohd Izrul Izwan RamliThis paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder. -
PublicationPerformance of Sn-3.0Ag-0.5Cu somposite solder with kaolin geopolymer ceramic reinforcement on microstructure and mechanical properties under isothermal ageing( 2021)
;Nur Syahirah Mohamad Zaimi ;Andrei Victor Sandu ;Petrica Vizureanu ;Mohd Izrul Izwan RamliThis paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder. -
PublicationMetakaolin/sludge based geopolymer adsorbent on high removal efficiency of Cu2+( 2022)
;Pilomeena Arokiasamy ;Mohd Remy Rozainy Mohd Arif Zainol ;Marwan Kheimi ;Andrei Victor Sandu ;Petrica Vizureanu ;Rafiza Abdul RazakActivated carbon (AC) has received a lot of interest from researchers for the removal of heavy metals from wastewater due to its abundant porous structure. However, it was found unable to meet the required adsorption capacity due to its amorphous structure which restricts the fundamental studies and structural optimization for improved removal performance. In addition, AC is not applicable in large scale wastewater treatment due its expensive synthesis and difficulty in regeneration. Thus, the researchers are paying more attention in synthesis of low cost geopolymer based adsorbent for heavy metal removal due its excellent immobilization effect. However, limited studies have focused on the synthesis of geopolymer based adsorbent for heavy metal adsorption by utilizing industrial sludge. Thus, the aim of this research was to develop metakaolin (MK) based geopolymer adsorbent with incorporation of two types of industrial sludge (S1 and S3) that could be employed as an adsorbent for removing copper (Cu²⁺) from aqueous solution through the adsorption process. The effects of varied solid to liquid ratio (S/L) on the synthesis of metakaolin/sludge based geopolymer adsorbent and the removal efficiency of Cu²⁺ by the synthesis adsorbent were studied. The raw materials and synthesized geopolymer were characterized by using x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and micro XRF. The concentration of Cu²⁺ before and after adsorption was determined by atomic absorption spectroscopy (AAS) and the removal efficiency was calculated. The experimental data indicated that the synthesized geopolymer at low S/L ratio has achieved the highest removal efficiency of Cu²⁺ about 99.62% and 99.37% at 25%:75% of MK/S1 and 25%:75% of MK/S3 respectively compared to pure MK based geopolymer with 98.56%. The best S/L ratio for MK/S1 and MK/S3 is 0.6 at which the reaction between the alkaline activator and the aluminosilicate materials has improved and enhanced the geopolymerization process. Finally, this work clearly indicated that industrial sludge can be utilized in developing low-cost adsorbent with high removal efficiency -
PublicationMechanical performance, microstructure, and porosity evolution of fly ash geopolymer after ten years of curing age( 2023)
;Ikmal Hakem A. Aziz ;Jitrin Chaiprapa ;Catleya Rojviriya ;Petrica Vizureanu ;Andrei Victor SanduThis paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes. -
PublicationEffects of multiple reflow on the formation of primary crystals in Sn-3.5Ag and solder joint strength: Experimental and finite element analysis( 2023)
;Siti Farahnabilah Muhd Amli ;Mohd Sharizal Abdul Aziz ;Hideyuki Yasuda ;Kazuhiro Nogita ;Ovidiu Nemes ;Andrei Victor SanduPetrica VizureanuThe growth and formation of primary intermetallics formed in Sn-3.5Ag soldered on copper organic solderability preservative (Cu-OSP) and electroless nickel immersion gold (ENIG) surface finish after multiple reflows were systematically investigated. Real-time synchrotron imaging was used to investigate the microstructure, focusing on the in situ growth behavior of primary intermetallics during the solid–liquid–solid interactions. The high-speed shear test was conducted to observe the correlation of microstructure formation to the solder joint strength. Subsequently, the experimental results were correlated with the numerical Finite Element (FE) modeling using ANSYS software to investigate the effects of primary intermetallics on the reliability of solder joints. In the Sn-3.5Ag/Cu-OSP solder joint, the well-known Cu6Sn5 interfacial intermetallic compounds (IMCs) layer was observed in each reflow, where the thickness of the IMC layer increases with an increasing number of reflows due to the Cu diffusion from the substrate. Meanwhile, for the Sn-3.5Ag/ENIG solder joints, the Ni3Sn4 interfacial IMC layer was formed first, followed by the (Cu, Ni)6Sn5 IMC layer, where the formation was detected after five cycles of reflow. The results obtained from real-time imaging prove that the Ni layer from the ENIG surface finish possessed an effective barrier to suppress and control the Cu dissolution from the substrates, as there is no sizeable primary phase observed up to four cycles of reflow. Thus, this resulted in a thinner IMC layer and smaller primary intermetallics, producing a stronger solder joint for Sn-3.5Ag/ENIG even after the repeated reflow process relative to the Sn-3.5Ag/Cu-OSP joints. -
PublicationRecent developments in steelmaking industry and potential alkali activated based steel waste: A comprehensive review( 2022)
;Ikmal Hakem Aziz ;Long Yuan Li ;Andrei Victor Sandu ;Petrica Vizureanu ;Ovidiu NemesShaik Numan MahdiThe steel industry is responsible for one-third of all global industrial CO2 emissions, putting pressure on the industry to shift forward towards more environmentally friendly production methods. The metallurgical industry is under enormous pressure to reduce CO2 emissions as a result of growing environmental concerns about global warming. The reduction in CO2 emissions is normally fulfilled by recycling steel waste into alkali-activated cement. Numerous types of steel waste have been produced via three main production routes, including blast furnace, electric arc furnace, and basic oxygen furnace. To date, all of the steel waste has been incorporated into alkali activation system to enhance the properties. This review focuses on the current developments over the last ten years in the steelmaking industry. This work also summarizes the utilization of steel waste for improving cement properties through an alkali activation system. Finally, this work presents some future research opportunities with regard to the potential of steel waste to be utilized as an alkali-activated material. -
PublicationThe influence of sintering temperature on the pore structure of an Alkali-Activated Kaolin-Based Geopolymer Ceramic( 2022)
;Mohd Izrul Izwan Ramli ;Ikmal Hakem Aziz ;Tan Chi Ying ;Noor Fifinatasha Shahedan ;Winfried Kockelmann ;Anna Fedrigo ;Andrei Victor Sandu ;Petrica Vizureanu ;Jitrin ChaiprapaDumitru Doru Burduhos NergisGeopolymer materials are used as construction materials due to their lower carbon dioxide (CO2) emissions compared with conventional cementitious materials. An example of a geopolymer material is alkali-activated kaolin, which is a viable alternative for producing high-strength ceramics. Producing high-performing kaolin ceramics using the conventional method requires a high processing temperature (over 1200 °C). However, properties such as pore size and distribution are affected at high sintering temperatures. Therefore, knowledge regarding the sintering process and related pore structures on alkali-activated kaolin geopolymer ceramic is crucial for optimizing the properties of the aforementioned materials. Pore size was analyzed using neutron tomography, while pore distribution was observed using synchrotron micro-XRF. This study elucidated the pore structure of alkali-activated kaolin at various sintering temperatures. The experiments showed the presence of open pores and closed pores in alkali-activated kaolin geopolymer ceramic samples. The distributions of the main elements within the geopolymer ceramic edifice were found with Si and Al maps, allowing for the identification of the kaolin geopolymer. The results also confirmed that increasing the sintering temperature to 1100 °C resulted in the alkali-activated kaolin geopolymer ceramic samples having large pores, with an average size of ~80 µm3 and a layered porosity distribution.