Options
Mohammad Nuzaihan Md Nor
Preferred name
Mohammad Nuzaihan Md Nor
Official Name
Mohammad Nuzaihan , Md Nor
Alternative Name
Nuzaihan, M. N.M.
M.Nuzaihan, M. N.
Md Nor, Mohammad Nuzaihan
Nuzaihan, M. M.
Nor, M. N.Md
Md Nor, M. Nuzaihan
Main Affiliation
Scopus Author ID
57219031365
Researcher ID
FMD-4992-2022
Now showing
1 - 3 of 3
-
PublicationSilicon nanowire biosensors for diabetes mellitus monitoring( 2024-10)
;M. Shaifullah A. S ;J. Jumat ;J. N. Ismail ;M. SyamsulRozaimah A. TThe main goal of this research is the development of a label-free biosensor for the detection of diabetes mellitus (DM) using the target molecule retinol-binding protein 4 (RBP4). The enzyme-linked immunosorbent assay (ELISA) approach, currently used to detect DM, is time-consuming and difficult. As a result, label-free biosensors are being considered as an alternative. In this research, silicon nanowires (SiNWs) were selected as the transducer for this biosensor due to their low cost, real-time analysis capability, high sensitivity, and low detection limit. The SiNWs were created using conventional lithography, reactive ion etching (RIE), and physical vapor deposition (PVD), and then dripped with a gold nanoparticle solution to create gold-decorated SiNWs. The surface of the gold-decorated SiNWs was functionalized using 3-aminothiophenol and glutaraldehyde solutions before being immobilized with DM RBP4 antibodies and targets. The electrical characterization of the gold nanoparticle decorated SiNWs biosensor revealed good performance in DM detection. The pH tests confirmed that the SiNWs acted as a transducer, with current proportional to the DM RBP4 concentration. The estimated limit of detection (LOD) and sensitivity for detecting DM RBP4 binding were 0.076 fg/mL and 8.92 nA(g/mL)-1, respectively. This gold nanoparticle decorated SiNWs biosensor performed better than other methods and enabled efficient, accurate, and direct detection of DM. The SiNWs could be used as a distinctive electrical protein biosensor for biological diagnostic purposes. In conclusion, gold nanoparticle deposition offers effective label-free, direct, and high-accuracy DM detection, outperforming previous approaches. Thus, these SiNWs serve as novel electrical protein biosensors for future biological diagnostic applications. -
PublicationFabrication and simulation of silicon nanogaps pH sensor as preliminary study for Retinol Binding Protein 4 (RBP4) detection( 2025-01)
;M. I. Hashim ;M. Shaifullah A.S ;C. Y. Chean ;M. SyamsulRozaimah A.T.In this research, a silicon nanogap biosensor has the potential to play a significant role in the field of biosensors for detecting Retinol Binding Protein 4 (RBP4) molecules due to its unique nanostructure morphology, biocompatibility features, and electrical capabilities. Additionally, as preliminary research for RBP4, a silicon nanogap biosensor with unique molecular gate control for pH measurement was developed. Firstly, using conventional lithography followed by the Reactive-ion etching (RIE) technique, a nanofabrication approach was utilized to produce silicon nanogaps from silicon-on-insulator (SOI) wafers. The critical aspects contributing to the process and size reduction procedures were highlighted to achieve nanometer-scale size. The resulting silicon nanogaps, ranging from 100 nm to 200 nm, were fabricated precisely on the device. Secondly, pH level detection was performed using several types of standard aqueous pH buffer solutions (pH 6, pH 7, pH 12) to test the electrical response of the device. The sensitivity of the silicon nanogap pH sensor was 7.66 pS/pH (R² = 0.97), indicating that the device has a wide range of pH detecting capacity. This also includes the silicon nanogap biosensor validated by simulation, with the sensitivity obtained being 3.24 μA/e.cm² (R² = 0.98). The simulation of the sensitivity is based on the interface charge (Qf) that represents the concentration of RBP4. The results reveal that the silicon nanogap biosensor has excellent characteristics for detecting pH levels and RBP4 with outstanding sensitivity performance. In conclusion, this silicon nanogap biosensor can be used as a new electrical RBP4 biosensor for biomedical diagnostic applications in the future. -
PublicationFabrication of silicon nanowire sensors for highly sensitive pH and DNA hybridization detection( 2022)
;Siti Fatimah Abd Rahman ;Nor Azah YusofMohd Nizar HamidonA highly sensitive silicon nanowire (SiNW)-based sensor device was developed using electron beam lithography integrated with complementary metal oxide semiconductor (CMOS) technology. The top-down fabrication approach enables the rapid fabrication of device miniaturization with uniform and strictly controlled geometric and surface properties. This study demonstrates that SiNW devices are well-aligned with different widths and numbers for pH sensing. The device consists of a single nanowire with 60 nm width, exhibiting an ideal pH responsivity (18.26 × 106 Ω/pH), with a good linear relation between the electrical response and a pH level range of 4–10. The optimized SiNW device is employed to detect specific single-stranded deoxyribonucleic acid (ssDNA) molecules. To use the sensing area, the sensor surface was chemically modified using (3-aminopropyl) triethoxysilane and glutaraldehyde, yielding covalently linked nanowire ssDNA adducts. Detection of hybridized DNA works by detecting the changes in the electrical current of the ssDNA-functionalized SiNW sensor, interacting with the targeted ssDNA in a label-free way. The developed biosensor shows selectivity for the complementary target ssDNA with linear detection ranging from 1.0 × 10−12 M to 1.0 × 10−7 M and an attained detection limit of 4.131 × 10−13 M. This indicates that the use of SiNW devices is a promising approach for the applications of ion detection and biomolecules sensing and could serve as a novel biosensor for future biomedical diagnosis.1 18