Options
Mohammad Nuzaihan Md Nor
Preferred name
Mohammad Nuzaihan Md Nor
Official Name
Mohammad Nuzaihan , Md Nor
Alternative Name
Nuzaihan, M. N.M.
M.Nuzaihan, M. N.
Md Nor, Mohammad Nuzaihan
Nuzaihan, M. M.
Nor, M. N.Md
Md Nor, M. Nuzaihan
Main Affiliation
Scopus Author ID
57219031365
Researcher ID
FMD-4992-2022
Now showing
1 - 6 of 6
-
PublicationCost effective negative Plenum Cleanroom for Microelectronic Engineering undergraduatehe Negative Plenum Cleanroom which is design and built by KUKUM is primarily used for the teaching of the undergraduate microelectronic course. The cleanroom is approximately 115m² in size. The level of cleanliness in the cleanroom ranges from ISO Class 5 (Yellow Room) to ISO Class 8 (Grey Area/Utility Chase). The cleanroom is constructed with a negative plenum to house the fan filter units, which make it different from other commercially available cleanrooms. With negative plenum, maintenance work cost will be reduced and make the cleanroom life longer. The main intention of this project is to expose and teach students to appreciate the stringent cleanroom protocols, health and safety requirement in addition to the formal course works.
-
PublicationSilicon nanowire biosensors for diabetes mellitus monitoring( 2024-10)
;M. Shaifullah A. S ;J. Jumat ;J. N. Ismail ;M. SyamsulRozaimah A. TThe main goal of this research is the development of a label-free biosensor for the detection of diabetes mellitus (DM) using the target molecule retinol-binding protein 4 (RBP4). The enzyme-linked immunosorbent assay (ELISA) approach, currently used to detect DM, is time-consuming and difficult. As a result, label-free biosensors are being considered as an alternative. In this research, silicon nanowires (SiNWs) were selected as the transducer for this biosensor due to their low cost, real-time analysis capability, high sensitivity, and low detection limit. The SiNWs were created using conventional lithography, reactive ion etching (RIE), and physical vapor deposition (PVD), and then dripped with a gold nanoparticle solution to create gold-decorated SiNWs. The surface of the gold-decorated SiNWs was functionalized using 3-aminothiophenol and glutaraldehyde solutions before being immobilized with DM RBP4 antibodies and targets. The electrical characterization of the gold nanoparticle decorated SiNWs biosensor revealed good performance in DM detection. The pH tests confirmed that the SiNWs acted as a transducer, with current proportional to the DM RBP4 concentration. The estimated limit of detection (LOD) and sensitivity for detecting DM RBP4 binding were 0.076 fg/mL and 8.92 nA(g/mL)-1, respectively. This gold nanoparticle decorated SiNWs biosensor performed better than other methods and enabled efficient, accurate, and direct detection of DM. The SiNWs could be used as a distinctive electrical protein biosensor for biological diagnostic purposes. In conclusion, gold nanoparticle deposition offers effective label-free, direct, and high-accuracy DM detection, outperforming previous approaches. Thus, these SiNWs serve as novel electrical protein biosensors for future biological diagnostic applications. -
PublicationImpact of Nanogap Thickness on Dielectric-Modulated Field-effect Transistor Biosensor Performance for Uncharged Biomolecules Detection( 2023-01-01)
;Jasmi M.S. ;Rahman S.F.A. ;Shaifullah. A. S M.Ibrahim M.M.Uncharged biomolecules sensing performance of dielectric-modulated field-effect transistor (DMFET) biosensor at various nanogap thickness via semiconductor device simulation tool was assessed in this work. The device structures with 10 nm-, 15 nm-, and 20 nm-thick nanogap were constructed for this investigation. Each device structure was applied with dielectric constant ranging from 2 to 7 at the nanogap representing the presence of various biomolecules. These device structures were electrically simulated by supplying gate voltage from 0 V to 2 V and biased with drain voltage of 0.05 V for linear region of operation. Based on the extracted drain current, the reduction of nanogap thickness increase capacitance at the nanogap region. In additional, increase in nanogap's dielectric constant causing an increase of its capacitance, and translated into higher output drain current. Sensitivity calculation and analysis shows DMFET biosensor with 10 nm-thick nanogap demonstrated the highest sensitivity with 6.896 μA/dec, which possibly permit enhanced sensing of uncharged biomolecule. -
PublicationFabrication and simulation of silicon nanowire pH sensor for Diabetes Mellitus detection( 2023-04)
;C. Y. Chean ;M. I. HashimRozaimah A.TDiabetes Mellitus (DM) is a disease failed to control the balance of blood sugar level due to lack of insulin thereby it effect human health. In Malaysia, there are around 3.9 millions people aged 18 years old and above have diabetes according to National Health and Morbidity Survey 2019. Silicon Nanowire is a nanostructure which has ultra-high sensitivity and non-radioactive that has potential given good performances when applied on pH sensor and biosensor. Silicon nanowire pH sensor and biosensor is an electronic sensor that investigated to improve the sensitivity and accuracy for detecting DM. This project consists of two parts, which are fabrication of silicon nanowire pH sensor and simulation of silicon nanowire biosensor as preliminary study. In fabrication, silicon nanowire of pH sensor is fabricated by conventional lithography process, reaction ion etching (RIE) and metallization to achieved the width of 100 nm silicon nanowire. The pH6, pH7, pH10 and DI water as analytes to analysis the current-voltage (I-V) characteristics of silicon nanowire pH sensor. In second part, the silicon nanowire biosensor as preliminary study is done simulation by Silvaco ATLAS devices simulator. The silicon nanowire with 30 nm in height and 20 nm in width of biosensor is designed and simulated to analyze the performance in terms of sensitivity. I-V characteristics of silicon nanowire biosensor according to different concentration of negative interface charge is determined. The negative interface charge represent as the Retinol Binding Protein 4 (RBP4) which is used to diagnose DM. The I-V characteristic based on the change in current, resistance and conductance to determine sensitivity. Lastly, the sensitivity of silicon nanowire pH sensor obtained 23.9 pS/pH while the sensitivity of simulated silicon nanowire biosensor obtained 3.91 nS/e.cm2. The results shown the more negative charge of concentration analyte attached on surface silicon nanowire has been accumulated more current flow from drain terminal to source terminal. It leads to the resistance becomes highest and obtained good sensitivity. In summary, the silicon nanowire pH sensor exhibited good performance and high sensitivity in detection pH level. The simulated silicon nanowire biosensor is capable of detecting biomolecular interactions charges to obtained high sensitive and accuracy result. -
PublicationFabrication and simulation of silicon nanogaps pH sensor as preliminary study for Retinol Binding Protein 4 (RBP4) detection( 2025-01)
;M. I. Hashim ;M. Shaifullah A.S ;C. Y. Chean ;M. SyamsulRozaimah A.T.In this research, a silicon nanogap biosensor has the potential to play a significant role in the field of biosensors for detecting Retinol Binding Protein 4 (RBP4) molecules due to its unique nanostructure morphology, biocompatibility features, and electrical capabilities. Additionally, as preliminary research for RBP4, a silicon nanogap biosensor with unique molecular gate control for pH measurement was developed. Firstly, using conventional lithography followed by the Reactive-ion etching (RIE) technique, a nanofabrication approach was utilized to produce silicon nanogaps from silicon-on-insulator (SOI) wafers. The critical aspects contributing to the process and size reduction procedures were highlighted to achieve nanometer-scale size. The resulting silicon nanogaps, ranging from 100 nm to 200 nm, were fabricated precisely on the device. Secondly, pH level detection was performed using several types of standard aqueous pH buffer solutions (pH 6, pH 7, pH 12) to test the electrical response of the device. The sensitivity of the silicon nanogap pH sensor was 7.66 pS/pH (R² = 0.97), indicating that the device has a wide range of pH detecting capacity. This also includes the silicon nanogap biosensor validated by simulation, with the sensitivity obtained being 3.24 μA/e.cm² (R² = 0.98). The simulation of the sensitivity is based on the interface charge (Qf) that represents the concentration of RBP4. The results reveal that the silicon nanogap biosensor has excellent characteristics for detecting pH levels and RBP4 with outstanding sensitivity performance. In conclusion, this silicon nanogap biosensor can be used as a new electrical RBP4 biosensor for biomedical diagnostic applications in the future. -
PublicationElectrical simulation on silicon nanowire field-effect transistor biosensor at different substrate-gate voltage bias conditions for charge detection( 2022-12)
;X.Y. Teoh ;Y.M.TanM.M. IbrahimIn this work, the impact of different substrate-gate voltage bias conditions (below and above the device threshold voltage) on current-voltage characteristics and sensitivity of a silicon nanowire field-effect transistor (SiNW-FET) biosensor was investigated. A 3-dimensional device structure with n-type SiNW channel and a substrate gate electrode was designed and electrically simulated In the Silvaco ATLAS. Next, the SiNW channel was covered with a range of interface charge density to mimic the charged target biomolecule captured by the device. The outcome was translated into a drain current versus interface charge semi-log graph and the device sensitivity was calculated using the linear regression curve’s slope of the plotted data. The device’s electrical characteristic shown higher generation of output drain current values with the increase of negative substrate-gate voltage bias due to the hole carriers’ accumulation that forms a conduction channel in the SiNW. Application of higher negative interface charge density increased the change in drain current, with the device biased with higher substrate-gate voltage shows more significant change in drain current. The device sensitivity increased when biased with higher substrate-gate voltage with highest sensitivity is 75.12 nA/dec at substrate-gate voltage bias of –1.00 V.2 17