Now showing 1 - 9 of 9
  • Publication
    Dielectric spectroscopy technique for carbohydrate characterization of fragrant rice, brown rice and white rice
    ( 2017-11-20) ;
    Kok Yeow You
    ;
    Lee KimYee
    ;
    Abbas Z.
    ;
    ; ; ;
    Lee Y.S.
    This study was conducted to investigate the feasibility of microwave dielectric spectroscopic technique in characterizing commercial rice due to different level of moisture content. There are some unethical rice industry runner mixes good qualities of rice which can be sold at high price with low cost and quality of rice to maximize profit. It causes fraudulency in business and great lost in term of money to nation who take rice as staple food. It happens frequently in Asian country which is active in agricultural activities. This technique is implemented using Keysight E8362B network analyzer in conjunction with an Keysight 85070E dielectric probe ranging from 200 MHz to 10 GHz. The samples of study are commercially available at market, namely fragrant rice, white rice, and brown rice, respectively. These are the popular and favorite rice for Malaysian due its delicacy and affordable price. Nutrient level for fragrant rice, white rice, and brown rice in terms of protein, moisture, carbohydrate and fat are different and unique. It leads to various electromagnetic responses toward frequency. Dielectric and reflection measurement were conducted to characterize these rice. The presence of polar and non-polar molecules in nutrient of rice causes variation of dielectric and reflection behavior over the operating frequency range.
  • Publication
    Lumped-element circuit modeling for composite scaffold with Nano-Hydroxyapatite and wangi rice starch
    Mechanistic studies of the interaction of electromagnetic (EM) fields with biomaterials has motivated a growing need for accurate models to describe the EM behavior of biomaterials exposed to these fields. In this paper, biodegradable bone scaffolds were fabricated using Wangi rice starch and nano-hydroxyapatite (nHA). The effects of porosity and composition on the fabricated scaffold were discussed via electrical impedance spectroscopy analysis. The fabricated scaffold was subjected to an electromagnetic field within the X-band and Ku-band (microwave spectrum) during impedance/dielectric measurement. The impedance spectra were analyzed with lumped-element models. The impedance spectra of the scaffold can be embodied in equivalent circuit models composed of passive components of the circuit, i.e., resistors, inductors and capacitors. It represents the morphological, structural and chemical characteristics of the bone scaffold. The developed models describe the impedance characteristics of plant tissue. In this study, it was found that the ε′ and ε″ of scaffold composites exhibited up and down trends over frequencies for both X-band and Ku-band. The circuit models presented the lowest mean percentage errors of Z′ and Z″, i.e., 3.60% and 13.80%, respectively.
      15  1
  • Publication
    Regression analysis of the dielectric and morphological properties for Porous Nanohydroxyapatite/Starch composites: a correlative study
    This paper aims to investigate the dielectric properties, i.e., dielectric constant (ε′), dielectric loss factor (ε″), dielectric tangent loss (tan δ), electrical conductivity (σ), and penetration depth (Dp), of the porous nanohydroxyapatite/starch composites in the function of starch proportion, pore size, and porosity over a broad band frequency range of 5 MHz–12 GHz. The porous nanohydroxyapatite/starch composites were fabricated using different starch proportions ranging from 30 to 90 wt%. The results reveal that the dielectric properties and the microstructural features of the porous nanohydroxyapatite/starch composites can be enhanced by the increment in the starch proportion. Nevertheless, the composite with 80 wt% of starch proportion exhibit low dielectric properties (ε′, ε″, tan δ, and σ) and a high penetration depth because of its highly interconnected porous microstructures. The dielectric properties of the porous nanohydroxyapatite/starch composites are highly dependent on starch proportion, average pore size, and porosity. The regression models are developed to express the dielectric properties of the porous nanohydroxyapatite/starch composites (R2 > 0.96) in the function of starch proportion, pore size, and porosity from 1 to 11 GHz. This dielectric study can facilitate the assessment of bone scaffold design in bone tissue engineering applications.
      2  18
  • Publication
    Microwave dielectric analysis on adhesive disbond in acrylic glass (Poly (Methyl Methacrylate)) at KU-band
    A microwave dielectric spectroscopy for detecting adhesive disbonds between acrylic glass (aka Poly (methyl methacrylate)) was discussed. The adhesive bond was developed using epoxy resin and acrylate. The level of joint disbond can be quantified using Young Modulus. In this work, the strength of bond is affected by radius of air void within adhesive bond. A high-frequency electromagnetic wave propagated through two joint acrylic glass with acrylate and epoxy adhesive using waveguide adaptor WR90 in conjunction with professional network analyser. This electromagnetic wave is reflected and transmitted at the bond interface due to mismatch impedance at adhesive bond. The output is a dielectric properties that characterizes the bond interface. The increment of Young Modulus leads to increment of dielectric constant and loss factor for epoxy resin and acrylates, respectively.
      7  34
  • Publication
    Dielectric properties of hydrothermally modified potato, corn, and rice starch
    The effect of starch granule sizes, shapes, composition, and frequency on the dielectric properties (dielectric constant, loss factor, and conductivity) of native and hydrothermally modified starches (potato, corn, and rice starch) are investigated in this work. Dielectric properties are determined from 5 Hz to 5 GHz. The modified starches exhibit lower dielectric properties than the native starches from 5 Hz to 5 GHz due to the disruption of the native polysaccharide’s molecular arrangement. The modified potato starch shows the highest loss factor (208.12 at 50 Hz and 19.95 at 500 Hz) and stable conductivity (~5.33 × 10−7 S/m at 50 Hz and 500 Hz) due to the larger continuous network structure after hydrothermal modification. The rice starch shows the largest difference in dielectric constant (47.30%) and loss factor (71.42%) between the modified form and native form in the frequency range of 5 MHz–5 GHz. This is due to the restriction of dipole motions in the closely packed structure after hydrothermal modification. The findings indicate that the quality of starch modification can be characterized by dielectric properties for assisting starch-based plastic production’s design.
      2  14
  • Publication
    Regression analysis of the dielectric and morphological properties for porous Nanohydroxyapatite/Starch composites: a correlative study
    This paper aims to investigate the dielectric properties, i.e., dielectric constant (ε′), dielectric loss factor (ε″), dielectric tangent loss (tan δ), electrical conductivity (σ), and penetration depth (Dp), of the porous nanohydroxyapatite/starch composites in the function of starch proportion, pore size, and porosity over a broad band frequency range of 5 MHz–12 GHz. The porous nanohydroxyapatite/starch composites were fabricated using different starch proportions ranging from 30 to 90 wt%. The results reveal that the dielectric properties and the microstructural features of the porous nanohydroxyapatite/starch composites can be enhanced by the increment in the starch proportion. Nevertheless, the composite with 80 wt% of starch proportion exhibit low dielectric properties (ε′, ε″, tan δ, and σ) and a high penetration depth because of its highly interconnected porous microstructures. The dielectric properties of the porous nanohydroxyapatite/starch composites are highly dependent on starch proportion, average pore size, and porosity. The regression models are developed to express the dielectric properties of the porous nanohydroxyapatite/starch composites (R2 > 0.96) in the function of starch proportion, pore size, and porosity from 1 to 11 GHz. This dielectric study can facilitate the assessment of bone scaffold design in bone tissue engineering applications.
      1  14
  • Publication
    Complex impedance and modulus analysis on porous and non-porous scaffold composites due to effect of Hydroxyapatite/starch proportion
    This study aims to investigate the electric responses (complex modulus and complex impedance analysis) of hydroxyapatite/starch bone scaffold as a function of hydroxyapatite/starch proportion and the microstructural features. Hence, the non-porous and porous hydroxyapatite/starch composites were fabricated with various hydroxyapatite/starch proportions (70/30, 60/40, 50/50, 40/60, 30/70, 20/80, and 10/90 wt/wt%). Microstructural analysis of the porous hydroxyapatite/starch composites was carried out by using scanning electron microscopy. It shows that the formation of hierarchical porous microstructures with high porosity is more significant at a high starch proportion. The complex modulus and complex impedance analysis were conducted to investigate the electrical conduction mechanism of the hydroxyapatite/starch composites via dielectric spectroscopy within a frequency range from 5 MHz to 12 GHz. The electrical responses of the hydroxyapatite/starch composites are highly dependent on the frequency, material proportion, and microstructures. High starch proportion and highly porous hierarchical microstructures enhance the electrical responses of the hydroxyapatite/starch composite. The material proportion and microstructure features of the hydroxyapatite/starch composites can be indirectly reflected by the simulated electrical parameters of the equivalent electrical circuit models.
      2  8
  • Publication
    Lumped-element circuit modeling for composite scaffold with nano-hydroxyapatite and wangi rice starch
    Mechanistic studies of the interaction of electromagnetic (EM) fields with biomaterials has motivated a growing need for accurate models to describe the EM behavior of biomaterials exposed to these fields. In this paper, biodegradable bone scaffolds were fabricated using Wangi rice starch and nano-hydroxyapatite (nHA). The effects of porosity and composition on the fabricated scaffold were discussed via electrical impedance spectroscopy analysis. The fabricated scaffold was subjected to an electromagnetic field within the X-band and Ku-band (microwave spectrum) during impedance/dielectric measurement. The impedance spectra were analyzed with lumped-element models. The impedance spectra of the scaffold can be embodied in equivalent circuit models composed of passive components of the circuit, i.e., resistors, inductors and capacitors. It represents the morphological, structural and chemical characteristics of the bone scaffold. The developed models describe the impedance characteristics of plant tissue. In this study, it was found that the ε′ and ε″ of scaffold composites exhibited up and down trends over frequencies for both X-band and Ku-band. The circuit models presented the lowest mean percentage errors of Z′ and Z″, i.e., 3.60% and 13.80%, respectively.
      19  1
  • Publication
    Fabrication and characterization of three-dimensional porous cornstarch/n-HAp biocomposite scaffold
    The aim of this study is to investigate the morphological, functional group, crystallinity and mechanical properties of a three-dimensional porous cornstarch/n-HAp (nano-hydroxyapatite) biocomposite scaffold. In this study, cornstarch/n-HAp scaffolds were fabricated using the solvent casting and particulate leaching technique. The porous cornstarch/n-HAp composites with various cornstarch contents (30, 40, 50, 60, 70, 80 and 90 wt%) were prepared and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometer and compression test. The morphology of the scaffolds possessed macropores (200–600 Î¼m) and micropores (50–100 Î¼m) with a high interconnectivity. The porosity of the porous cornstarch/n-HAp scaffolds varied between 53 and 70% with compressive strength and compressive modulus of 2.03 and 8.27 MPa, respectively. The results suggested that highly porous cornstarch/n-HAp scaffold properties with adequate mechanical properties can be obtained for applications in bone tissue engineering.
      2  21