Options
Ho Li Ngee
Preferred name
Ho Li Ngee
Official Name
Ho, Li Ngee
Alternative Name
Li Ngee, Ho
Ho, Li Ngee
Ngee, Ho Li
Ho, L. N.
Main Affiliation
Scopus Author ID
57219028372
Researcher ID
DDY-6348-2022
Now showing
1 - 2 of 2
-
PublicationInfluence of Amaranth dye concentration on the efficiency of hybrid system of photocatalytic fuel cell and Fenton process( 2017-10-01)
;Noradiba Nordin ;Sin Li Lee ;Oon Yoong SinOon Yoong LingA novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed. -
PublicationDiscovering the roles of electrode distance and configuration in dye degradation and electricity generation in photocatalytic fuel cell integrated electro-Fenton process( 2022-01-01)
;Thor S.H. ;Nordin N. ;Ong Yong PorYap Kea LeePhotocatalytic fuel cell (PFC) integrated electro-Fenton (EF) system (PFC-EF system) was considered as an eco-friendly approach for dye degradation and electricity generation simultaneously. The modification on configuration of PFC-EF system was aimed to improve the dye degradation and power output. Effect of electrode distance on the efficiency of PFC-EF system was investigated as it was a crucial factor in the mass transfer of ions in PFC-EF system. Closer electrode distance reduced the resistance flow of ions and enhanced the mass transfer of ions between the electrodes in both PFC and EF, eventually yielded higher concentration of reactive species for removal of dye. Four different electrode configurations by varying the number of cathodes in PFC and EF were investigated to discover the most efficient operating configuration for this PFC-EF system. The dye decolourization rate was evaluated and compared by using pseudo-first order and second order in both PFC and EF system, respectively. Results revealed that single cathode PFC-EF system was the most effective configuration in dye degradation while double cathodes PFC-EF system was the optimal configuration to be used for power output.3