Options
Foo Kai Loong
Preferred name
Foo Kai Loong
Official Name
Foo, Kai Loong
Alternative Name
Loong, Foo Kai
Kai Loong, Foo
Foo, K. L.
Foo, Kai Loong
Foo, Kai Long
Main Affiliation
Scopus Author ID
37012449500
Researcher ID
D-2035-2015
Now showing
1 - 10 of 11
-
PublicationHydrothermal Growth Zinc Oxide Nanorods for pH Sensor Application( 2023-10-01)The aim of this work is to apply synthesized zinc oxide (ZnO) Nanorods using hydrothermal (HTL) growth technique for pH sensor application. The highly crystallite of ZnO Nanorods was obtained by anneal the growth ZnO Nanorods in furnace at 200 °C for 2 hours. Besides that, XRD analysis shows the produced ZnO Nanorods belonged to the (002) plane. Furthermore, Scanning Electron Microscope (SEM) images confirm that the ZnO Nanorods with hexagonal-faceted structural were successfully produced by HTL growth technique. In addition, Ultraviolet–visible (UV-Vis) spectrophotometer analysis shows that the synthesized ZnO belongs to the wide band gap semiconductor material. The growing ZnO Nanorods were then subjected to electrical measurement with various pH levels. The outcome demonstrates that the current rises as the solution changes from acidic to alkaline. Overall, our study shows a relationship between the electrical as well as the structural characteristics of ZnO Nanorods at various pH levels.
1 -
PublicationTowards greener one-part geopolymers through solid sodium activators modification( 2022-12-10)
;Ooi Wan En ;Bin Khalid M.S. ;Ong Shee Ween ;Pei Seng T. ;Hang Yong JieKhairunnisa ZulkiflyThis paper investigates the influence of various solid activators and their mixing parameters on the physical, mechanical and microstructural characteristics of greener one-part geopolymers (OPG) based on high calcium fly ash. The high calcium fly ash that has rarely been explored was utilised to develop OPG in this study. The anhydrous sodium metasilicate (Na2SiO3) with negative environmental impact propelled the partial replacement of Na2SiO3 with sodium hydroxide (NaOH) and sodium carbonate (Na2CO3). Two sets of high calcium fly ash OPGs were developed: (1) the MH-OPG comprised Na2SiO3 and NaOH; (2) the MC-OPG comprised Na2SiO3 and Na2CO3. The optimal MH-OPG (73 MPa) and MC-OPG (75 MPa) exhibited superior compressive strength, higher than the minimal requirement (>28 MPa) of ASTM C150/C150M-18 for construction binder material. Various solid alkali activators triggered different reaction mechanisms, yielding distinctive reaction products that contributed to strength growth. The sodium calcium aluminosilicate hydrate ((N,C)-A-S-H) gel was developed in MH-OPG, whereas the sodium carbonate hydrate, sodium aluminosilicate hydrate (N-A-S-H) and calcium aluminosilicate hydrate (C-A-S-H) binding phases were developed in the MC-OPG. Although Na2CO3 reduced the water demand, improved the fluidity and setting time, the MC-OPG was more sensitive to the alteration of mixing compositions, suggesting a tougher performance control during field application than the MH-OPG. The total embodied carbon (EC) of MC-OPG was lowered by 15.4% compared to that of MH-OPG. The embodied carbon index (ECI) of MH-OPG and MC-OPG were 81.3% and 84.7% less than that of OPC products. This work suggests that substituting Na2SiO3 with NaOH or Na2CO3 effectively produced a greener construction material without compromising mechanical strength.1 -
PublicationComparative mechanical and microstructural properties of high calcium fly ash one-part geopolymers activated with Na2SiO3-anhydrous and NaAlO2( 2021-11-01)
;Ooi Wan-En ;Li L.Y. ;Ong Shee-Ween ;Ng Hui-Teng ;Ng Yong-SingNur Ain JayaThis paper investigates the effect of varying solid alkali activators on the fresh and hardened properties and microstructural changes of one-part geopolymers (OPGs). Single and binary solid alkali activators were used to activate high calcium fly ash. The alkali activators were either solely sodium metasilicate (Na2SiO3) or a combination of sodium aluminate (NaAlO2) and sodium metasilicate (Na2SiO3). The OPG activated with anhydrous Na2SiO3 achieved an excellent 28-day compressive strength of 83.6 MPa while OPG activated with NaAlO2 and Na2SiO3 attained a compressive strength of 45.1 MPa. The Na2SiO3-activated OPG demonstrated better fluidity than the OPG activated with NaAlO2 and Na2SiO3 due to the thixotropic behaviour caused by the NaAlO2. The Na2SiO3-activated OPG consisted of sodium-calcium aluminium silicate hydrate ((N,C)-A-S-H) gel phase, while the OPG activated with NaAlO2 and Na2SiO3 comprised of the coexistence of sodium aluminium silicate hydrate (N-A-S-H) and calcium aluminium silicate hydrate (C-A-S-H) gel phases. Regardless of the distinctive properties, the OPGs are adequate for building materials applications.2 -
PublicationTowards greener one-part geopolymers through solid sodium activators modification( 2022-12-10)
;Ooi Wan-En ;Bin Khalid M.S. ;Ong Shee-Ween ;Pei Seng T. ;Hang Yong JieKhairunnisa ZulkiflyThis paper investigates the influence of various solid activators and their mixing parameters on the physical, mechanical and microstructural characteristics of greener one-part geopolymers (OPG) based on high calcium fly ash. The high calcium fly ash that has rarely been explored was utilised to develop OPG in this study. The anhydrous sodium metasilicate (Na2SiO3) with negative environmental impact propelled the partial replacement of Na2SiO3 with sodium hydroxide (NaOH) and sodium carbonate (Na2CO3). Two sets of high calcium fly ash OPGs were developed: (1) the MH-OPG comprised Na2SiO3 and NaOH; (2) the MC-OPG comprised Na2SiO3 and Na2CO3. The optimal MH-OPG (73 MPa) and MC-OPG (75 MPa) exhibited superior compressive strength, higher than the minimal requirement (>28 MPa) of ASTM C150/C150M-18 for construction binder material. Various solid alkali activators triggered different reaction mechanisms, yielding distinctive reaction products that contributed to strength growth. The sodium calcium aluminosilicate hydrate ((N,C)-A-S-H) gel was developed in MH-OPG, whereas the sodium carbonate hydrate, sodium aluminosilicate hydrate (N-A-S-H) and calcium aluminosilicate hydrate (C-A-S-H) binding phases were developed in the MC-OPG. Although Na2CO3 reduced the water demand, improved the fluidity and setting time, the MC-OPG was more sensitive to the alteration of mixing compositions, suggesting a tougher performance control during field application than the MH-OPG. The total embodied carbon (EC) of MC-OPG was lowered by 15.4% compared to that of MH-OPG. The embodied carbon index (ECI) of MH-OPG and MC-OPG were 81.3% and 84.7% less than that of OPC products. This work suggests that substituting Na2SiO3 with NaOH or Na2CO3 effectively produced a greener construction material without compromising mechanical strength.1 -
PublicationFunctionalized carbon nanotube - modified ELISA for early detection of heart attack( 2023-12)
;Emily M. Y. Chow ;M. KashifA warning issue of heart attacks in young adults needs immediate attention lately. Enzyme-linked immunosorbent assay (ELISA) is an easy and commonly used method for detecting early stages of heart attack. Cardiac troponin I (cTnI) is a responsible biomarker for acute myocardial infarction. However, the conventional ELISA system was only able to detect at 100 pM of cTnI. To improve the system, enhancements were introduced through the integration of functionalized carbon nanotube (fCNT) to amplify cTnI detection signals. By utilizing the advantage of fCNT, a noticeable improvement in results can be obtained. The detection limit was lowered down to an impressive 10 pM. Furthermore, the change of absorbance increased from 31.90% for conventional ELISA surge to 98.61 for modified ELISA system. This three-fold increase in sensitivity shows remarkable improvement through the introduction of fCNT in modified ELISA technique.3 9 -
PublicationProperties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading( 2021-09-01)
;Mutalib T.N.A.B.T.A.Polyaniline/graphene oxide (PANI/GO) composites at different wt% of GO were prepared via solution method. PANI was mixed with the GO synthesized from the improved Hummer’s method. The formation of GO was confirmed via Raman and C/O ratio. Based on the FT-IR, XRD and SEM results, it confirmed the presence of both PANI and GO characteristics at 10.9°, 25.8° and 27.8° and interactions between PANI and GO particles in PANI/GO composites at different GO loading. SEM micrographs showed a folding and wrinkled surface of GO due to the defect upon oxidation process. This means that the weak π–π interactions or the agglomeration of GO have caused PANI unable to attach on the large conjugated basal planes of GO sheets. The defective domains made GO as an insulator as it contained distortions and oxygen-containing functional groups and their local decoration. Low-conductivity domain had conquered most of the GO region which later reduced the pathway of the current flow; therefore, conductivity is affected. The wrinkled structure also resulted in the low conductivity as it weakens the interfacial interaction between PANI and GO and thus disrupted the electron movement in the composites. Due to this, the electrical conductivity reached up to 1.83 × 10−10 S/cm as the GO loading increased to 50 wt%.2 -
PublicationFunctionalized Carbon Nanotube-Modified ELISA for Early Detection of Heart Attack( 2023-12-01)
;Chow E.M.Y. ;Kashif M.A warning issue of heart attacks in young adults needs immediate attention lately. Enzyme-linked immunosorbent assay (ELISA) is an easy and commonly used method for detecting early stages of heart attack. Cardiac troponin I (cTnI) is a responsible biomarker for acute myocardial infarction. However, the conventional ELISA system was only able to detect at 100 pM of cTnI. To improve the system, enhancements were introduced through the integration of functionalized carbon nanotube (fCNT) to amplify cTnI detection signals. By utilizing the advantage of fCNT, a noticeable improvement in results can be obtained. The detection limit was lowered down to an impressive 10 pM. Furthermore, the change of absorbance increased from 31.90% for conventional ELISA surge to 98.61 for modified ELISA system. This three-fold increase in sensitivity shows remarkable improvement through the introduction of fCNT in modified ELISA technique.1 -
PublicationHydrothermal growth zinc oxide nanorods for pH sensor application( 2023-10)The aim of this work is to apply synthesized zinc oxide (ZnO) Nanorods using hydrothermal (HTL) growth technique for pH sensor application. The highly crystallite of ZnO Nanorods was obtained by anneal the growth ZnO Nanorods in furnace at 200°C for 2 hours. Besides that, XRD analysis shows the produced ZnO Nanorods belonged to the (002) plane. Furthermore, Scanning Electron Microscope (SEM) images confirm that the ZnO Nanorods with hexagonal-faceted structural were successfully produced by HTL growth technique. In addition, Ultraviolet–visible (UV-Vis) spectrophotometer analysis shows that the synthesized ZnO belongs to the wide band gap semiconductor material. The growing ZnO Nanorods were then subjected to electrical measurement with various pH levels. The outcome demonstrates that the current rises as the solution changes from acidic to alkaline. Overall, our study shows a relationship between the electrical as well as the structural characteristics of ZnO Nanorods at various pH levels.
1 19 -
PublicationEvaluation of the effect of silica fume on amorphous fly ash geopolymers exposed to elevated temperature( 2021-01-01)
;Li O.H. ;Bayuaji R. ;Teng N.H. ;Nabiałek M. ;Jeż B.Sing N.Y.The properties of amorphous geopolymer with silica fume addition after heat treatment was rarely reported in the geopolymer field. Geopolymer was prepared by mixing fly ash and alkali activator. The silica fume was added in 2% and 4% by weight. The geopolymer samples were cured at room temperature for 28 days before exposed to an elevated temperature up to 1000◦C. The incorporation of 2% silica fume did not cause significant improvement in the compressive strength of unexposed geopolymer. Higher silica fume content of 4% reduced the compressive strength of the unexposed geopolymer. When subjected to elevated temperature, geopolymer with 2% silica fume retained higher compressive strength at 1000◦C. The addition of silica fume in fly ash geopolymer caused a lower degree of shrinkage and expansion, as compared to geopolymer without the addition of silica fume. Crystalline phases of albite and magnetite were formed in the geopolymer at 1000◦C.1 15 -
PublicationEvaluation of the effect of silica fume on amorphous fly ash geopolymers exposed to elevated temperature( 2021)
;Ong Huey Li ;Ridho Bayuaji ;Ng Hui Teng ;Marcin Nabiałek ;Bartlomiej JeżNg Yong SingThe properties of amorphous geopolymer with silica fume addition after heat treatment was rarely reported in the geopolymer field. Geopolymer was prepared by mixing fly ash and alkali activator. The silica fume was added in 2% and 4% by weight. The geopolymer samples were cured at room temperature for 28 days before exposed to an elevated temperature up to 1000 °C. The incorporation of 2% silica fume did not cause significant improvement in the compressive strength of unexposed geopolymer. Higher silica fume content of 4% reduced the compressive strength of the unexposed geopolymer. When subjected to elevated temperature, geopolymer with 2% silica fume retained higher compressive strength at 1000 °C. The addition of silica fume in fly ash geopolymer caused a lower degree of shrinkage and expansion, as compared to geopolymer without the addition of silica fume. Crystalline phases of albite and magnetite were formed in the geopolymer at 1000 °C.3 10