Options
Fahmi Muhammad Ridwan
Preferred name
Fahmi Muhammad Ridwan
Official Name
Fahmi, Muhammad Ridwan
Alternative Name
Fahmi, Muhammad Ridwan
Fahmi, M. R.
Fahmi, R. M.
Main Affiliation
Scopus Author ID
57224170122
Researcher ID
F-5541-2011
Now showing
1 - 7 of 7
-
PublicationPilot scale single chamber up-flow membrane-less microbial fuel cell for wastewater treatment and electricity generation( 2017-04-06)
;Thung W.E. ;Oon Yoong Ling ;Oon Yoong SinHarvinder Kaur LehlPilot scale up-flow membrane-less microbial fuel cell (UFML-MFC) was constructed to study feasibility of the bioreactor for simultaneous degradation of organic substance and electricity generation. The performance of the UFML-MFC was evaluated with different anode electrode (cube carbon felt and stacked carbon felt) in terms of voltage output, chemical oxygen demand (COD) and Coulombic efficiency (CE). Carbon flake were used as cathode in the UFML-MFC. UFML-MFC was operated in three stages where included batch-fed, end of batch fed and semi-continuous. The Cube carbon felt as anode have the better performance in terms of voltage output and electricity generation in all 3 stages. Maximum voltage output was 0.311 ± 0.004 V at 75% of COD reduction and thus CE was 0.15%. The result shows the operational mode is the key to improve the voltage output and also COD reduction. -
PublicationPreliminary screening oxidative degradation methyl orange using ozone/ persulfate( 2018)
;Nur Aqilah Razali ;Siti Nasuha SabriSu Huan KowThe present study focusing on the performances of advanced oxidation process by using ozonation method towards Methyl Orange based on the efficiency of colour removal and Chemical Oxygen Demand (COD) removal. Factorial design with response surface methodology (RSM) was used to evaluate the interaction between operational conditions, such as pH, initial concentration, contact time and persulfate dosage to obtain the optimum range conditions using a semi-batch reactor. The range of independent variables investigated were pH (3-11), initial concentration (100-500mg/L), contact time (10-50min) and persulfate dosage (20-100mM) while the response variables were colour removal and COD removal of Methyl Orange. The experimental results and statistical analysis showed all the parameters were significant. Thus, from this findings, optimization of operational conditions that had been suggested from the ozone/persulfate RSM analysis were (pH 3, 100 mg/L, 50min, 60mM) that would be produced 99% Colour Removal and 80% COD Removal and help in promoting an efficient ozonation process. The effect list data that showed the most contributed effects to increase the percentages of colour removal were pH and persulfate dosage whereas the contact time and initial concentration had the highest positive effects on the COD removal. Other than that, the interaction between pH, contact time and persulfate dosage were found to be the most influencing interaction. Therefore the least influencing interaction was interaction between persulfate dosage and pH. In this study, the correlation coefficient value R2 for colour removal and COD removal of Methyl Orange were R2= 0.9976 and R2= 0.9924 which suggested a good fit of the first-order regression model with the experimental data. -
PublicationInfluence of leachate matrix on oxidation performance of ozonation and aops( 2022-12-15)
;Kow S.H. ;Wikurendra E.A.Handayani D.Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3 /H2 O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3 /PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3 /H2 O2 in reducing nitrogen-containing compounds.1 -
PublicationReactive Green 19 degradation using O3/S2 O8(2-) process: Intermediates and proposed degradation pathway( 2022-01-01)
;Mohd Razali N.A. ;Siti Nasuha Sabri ;Kow Su HuanSafya Abdul MalikThe massive drawbacks of conventional wastewater treatment have led to a demand investigation about new advanced wastewater treatment technology. The issue can be addressed via advanced oxidation processes (AOPs) as witnessed recently. Therefore, the objective of this study was to investigate the performance of ozone/persulfate ((Formula presented.)) process to assess its use as potential degradation of diazo dye which is Reactive Green 19 (RG19). In this work, efficiency, color, and COD removal were investigated over a range of initial pH, persulfate concentration and initial concentration of RG19. The amount of sodium persulfate ((Formula presented.)) was varied at different levels (20–100 mM) relative to precursor radical to assess the optimum usage of persulfate concentration for RG19 degradation. Evidence that RG19 could degrade efficiently had occurred at 100 mg/L, initial pH 9, 60 mM persulfate concentration was identified by FTIR and GC/MS analysis. The results revealed that RG19 could achieve complete decolorization easily as compared to mineralization. In addition, RG19 degradation pathway gave the best representation of level degradation. The GC/MS and FTIR results exhibited the proposed RG19 degradation pathway that involved the characteristic of sulfonic group, (Formula presented.) accompanied with (Formula presented.) became as an indicator of their structure broken down one by one. The degradation products such as oxalic acid, formic acids and others were analyzed and finally converted to carbon dioxide and water. The diazo dye structure itself aided with (Formula presented.) has its superior characteristic as an aid for the efficient degradation process.1 -
PublicationInfluence of leachate matrix on oxidation performance of ozonation and aops( 2022-12-15)
;Kow Su Huan ;Wikurendra E.A.Handayani D.Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3 /H2 O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3 /PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3 /H2 O2 in reducing nitrogen-containing compounds.1 -
PublicationTreatment of O3 with Na2S2O8 by ANOVA Interpretation towards degradation of azo dye( 2018-12)
;S. N. Sabri ;S.H. KowS.A. MalikAdvanced oxidation processes (AOPs) especially ozonation method is widely studied in the wastewater treatmentfield. In this study, it highlighted about threemainenvironmental issues in the world such as1) proposing a method to overcome uncontrollable effluents from textile industriesby using syntheticdyes; 2)creating an improvementof previous conventional method; 3) reduced process time by using statistical approach.To address with this issue, analysis of variance (ANOVA)from Response Surface Methodology (RSM)to study the performance of O3with the help of persulfate (Na2S2O8) for treating one of azo dyes which is Reactive Green 19.This is due to there isvery limited work done by statistical analysis on this study. Hence, ANOVA data would proposestatistical models tailored to the data in 2D and 3D contour plots by knowing the three influenced parameterswhich is pH(6 to 10),persulfate concentration (30to 70mM) and contact time (4 to 20 min). Through the analysis, the result can be concluded that improvement of ozonation process with persulfate (Na2S2O8) werestatistically significant after allinteractive effectsgave a positive feedback towards responses.The obtained optimum conditions included a persulfate concentration (49mM), initial pH (8.89) and contact time (18 min) with fixed initial concentration 100mg/L. The experimental results were corresponded well with predicted models colour removal rates which is 99%.18 22 -
PublicationStudy of O3/S2O82- Advanced Oxidation Processes (AOPs) for removal of dye industrial effluents( 2019)
;Sabri Siti NasuhaRazali Nur AqilahThis research was carried out to study the efficiency of O3/S2O82- system in removal of Reactive Red 120 (RR120) dye sample. Different operating parameter such as pH, initial dye concentration and persulfate dosage were studied to evaluate the performance on removing colour and COD. The removal of colour and COD achieved higher efficiency at pH 7, 100 mg/L of initial dye concentration and persulfate dosage of 5 g S2O82-/1 g RR120. O3/S2O82- with the most effective conditions experienced effective decolourization and degradation of organic pollutants than O3 only. Furthermore, it achieved faster breakdown of azo bond and aromatic groups than O3 after treatment as observed with UV-Vis absorption spectra. The FT-IR analysis obtained new absorption peak that represents alkenes after 20 min of O3 treatment whereas mostly of the absorption bands of O3/S2O82- flattened.1 6