Options
Abdul Syafiq Abdull Sukor
Preferred name
Abdul Syafiq Abdull Sukor
Official Name
Abdull Sukor, Abdul Syafiq
Alternative Name
Abdull Sukor, Abdul Syafiq
Sukor, Abdul Syafiq Abdull
Sukor, Abdul Syafiq Bin Abdull
Abdull Sukor, A. S.
Sukor, A. S.A.
Main Affiliation
Scopus Author ID
57209073616
Researcher ID
L-8520-2019
Now showing
1 - 10 of 24
-
PublicationSuperpixels-based automatic density peaks and fuzzy clustering approach in COVID-19 lung segmentation(IEEE, 2023-12)
;Ooi Wei Herng ; ;Fatin Nabilah ShaariClustering algorithms that rely on minimizing an objective function suffer from the drawback of requiring manual setting of the number of clusters. This limitation becomes particularly evident when applied to image segmentation, where the large number of pixels can lead to memory overflow issues. To overcome this challenge, a reference of Automatic Fuzzy Clustering Framework (AFCF) for image segmentation method has been used as the comparison to the Density Peaks Clustering (DPC) algorithm. AFCF used superpixel algorithm to reduce the spatial information of data during computation, DPC algorithm to generate decision graph, and prior entropy-based fuzzy clustering (PEFC) algorithm to achieve fully automatic segmentation method in determining the number of cluster and the clustering result. In this study, 50 open-source healthy, COVID-19 and pneumonia infected radiographs dataset are acquired from the Kaggle and Github. The radiographs dataset that segmented by DPC is down sampling to 100*100 pixels due to overloading computation. At the end of the image segmentation, a segmentation performance evaluation is conducted based on sensitivity, specificity, accuracy, precision, recall, F-score and time consumed. The result shows that AFCF algorithm has the better overall performance with higher accuracy of 92.48% and F-score 0.9455. Meanwhile, the most highlighted evaluation index is drop to the time consume comparison, AFCF has around 2.7 times faster processing speed compare to DPC algorithm. -
PublicationPredictive analysis of in-vehicle air quality monitoring system using Deep Learning technique( 2022)
; ;Goh Chew Cheik ; ;Xiaoyang Mao ;Hiromitsu Nishizaki ;In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.1 20 -
PublicationInvestigation of Different Classifiers for Stress Level Classification using PCA-Based Machine Learning Method( 2023-01-01)
;Mazlan M.R.B. ; ; ;Jamaluddin R.B.Undergraduate students experience several changes and face various problems during their time transitioning from adolescence to adulthood. One of the issues during this time is a mental stress disorder. Stress burdens the students either through mental or physical capabilities. The common method of determining stress includes physical examination and clinical diagnosis. However, the method is subjective and time-consuming as doctors need to make sure that their diagnosis is accurate. Thus, the severity of the stress stages could not be easily determined. A new method using machine learning-based algorithms coupled with EEG devices promises to overcome the issues with the current approaches. This paper presents an investigation using machine learning techniques based on Principal Component Analysis (PCA) which allows for the reduction in the dimensionality of datasets to enhance their interpretability while minimizing information loss. The pre-processed EEG data and PCA-based EEG data were compared and analyzed using three machine learning classifiers such as K-Nearest Network (KNN), Naive Bayes (NB) and Multilayer Perceptron (MLP). The results indicate that KNN demonstrated the highest average classification accuracy of 99%, while the other approaches mentioned above averaged around 50% and 80% for NB and MLP respectively. This investigation shows that the KNN classifier is most suitable for the proposed approach.1 -
PublicationA Review: Deep Learning Classification Performance of Normal and COVID-19 Chest X-ray Images( 2021-11-25)
;Marni Azira Markom ;Taha S.M. ; ; ; ; ;Arni Munira MarkomCOVID19 chest X-ray has been used as supplementary tools to support COVID19 severity level diagnosis. However, there are challenges that required to face by researchers around the world in order to implement these chest X-ray samples to be very helpful to detect the disease. Here, this paper presents a review of COVID19 chest X-ray classification using deep learning approach. This study is conducted to discuss the source of images and deep learning models as well as its performances. At the end of this paper, the challenges and future work on COVID19 chest X-ray are discussed and proposed.5 58 -
PublicationPredictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique( 2022-10-01)
; ;Cheik Goh Chew ; ;Mao X. ;Nishizaki H. ;In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.2 34 -
PublicationReal-time in-vehicle air quality monitoring system using machine learning prediction algorithm( 2021-08-01)
;Goh C.C. ; ; ;Nishizaki H. ; ;Mao X. ; ;Kanagaraj E. ;Elham M.F.This paper presents the development of a real-time cloud-based in-vehicle air quality monitoring system that enables the prediction of the current and future cabin air quality. The designed system provides predictive analytics using machine learning algorithms that can measure the drivers’ drowsiness and fatigue based on the air quality presented in the cabin car. It consists of five sensors that measure the level of CO2, particulate matter, vehicle speed, temperature, and humidity. Data from these sensors were collected in real-time from the vehicle cabin and stored in the cloud database. A predictive model using multilayer perceptron, support vector regression, and linear regression was developed to analyze the data and predict the future condition of in-vehicle air quality. The performance of these models was evaluated using the Root Mean Square Error, Mean Squared Error, Mean Absolute Error, and coefficient of determination (R2 ). The results showed that the support vector regression achieved excellent performance with the highest linearity between the predicted and actual data with an R2 of 0.9981.1 25 -
PublicationPredictive analysis of In-Vehicle air quality monitoring system using deep learning technique( 2022)
; ;Goh Chew Cheik ; ;Xiaoyang Mao ;Hiromitsu Nishizaki ;In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.1 20 -
PublicationPattern Clustering Approach for Activity Recognition in Smart Homes( 2022-01-01)
; ; ;Wahab M.N.A.In recent years, studies in activity recognition have shown an increasing amount of attention among other researchers. Activity recognition is usually performed through two steps: activity pattern clustering and classification processes. Clustering allows similar activity patterns to be grouped together while classification provides a decision-making process to infer the right activity. Although many related works have been suggested in these areas, there is some limitation as most of them are focused only on one part of these two processes. This paper presents a work that combines pattern clustering and classification into one single framework. The former uses the Self Organizing Map (SOM) to cluster activity data into groups while the latter utilizes semantic activity modelling to infer the right type of activity. Experimental results show that the combined method provides higher recognition accuracy compared to the traditional method of machine learning. Furthermore, it is more appropriate for a dynamic environment of human living.1 -
PublicationRssi-based for device-free localization using deep learning technique( 2020-06-01)
; ; ; ; ;Nishizaki H.Device-free localization (DFL) has become a hot topic in the paradigm of the Internet of Things. Traditional localization methods are focused on locating users with attached wearable devices. This involves privacy concerns and physical discomfort especially to users that need to wear and activate those devices daily. DFL makes use of the received signal strength indicator (RSSI) to characterize the user’s location based on their influence on wireless signals. Existing work utilizes statistical features extracted from wireless signals. However, some features may not perform well in different environments. They need to be manually designed for a specific application. Thus, data processing is an important step towards producing robust input data for the classification process. This paper presents experimental procedures using the deep learning approach to automatically learn discriminative features and classify the user’s location. Extensive experiments performed in an indoor laboratory environment demonstrate that the approach can achieve 84.2% accuracy compared to the other basic machine learning algorithms.7 30 -
PublicationRobust segmentation of COVID-19 chest X-Ray images: analysis of variant k-means based clustering algorithms(Semarak Ilmu Publishing, 2025-02)
; ;Ooi Wei HerngComputer aided diagnosis (CADx) become one the most famous method in diagnostic medical field due to the high reliability and efficiency. Recently, the coronavirus disease (COVID-19) has become severe global pandemic. Particularly, the Chest X-ray (CXR) imaging has become an essentiality in COVID-19 detection. As a result, the convergence of CADx technology with Chest X-ray analysis has achieved great efficiency in COVID-19 diagnosis. Therefore, the research value of CADx in COVID-19 diagnosis is exceptionally high. This study aims to evaluate different k-means based clustering algorithms and identifying the one with the highest overall accuracy. First of all, 150 COVID-19 CXR open-source images are acquired from Kaggle and Github. All the images will be unified into a same image size with 1000*1000 pixels and quality during the image pre-processing. Next, the resized images are enhanced by the Modified Global Contrast Stretching (MGCS) enhancement method to increase the quality of images. Then, the traditional k-means, k-medians, k-medoids and fast k-means clustering methods have been implemented in the image segmentation. At the same time, five different numbers <2, 4, 6, 8, 10> of clusters also tested out in this study. Lastly, all the segmented is proceeded to the segmentation performance based on sensitivity, specificity, accuracy, precision, recall and F-score. The result proves that the k-medoids clustering algorithm with 2 clusters archived the best overall segmentation performance as it obtained the highest sensitivity, accuracy, recall and F-score with 66.14%, 87.98%, 0.6614 and 0.7327.3 1