Now showing 1 - 10 of 10
  • Publication
    Performance analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques
    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
  • Publication
    Predictive analysis of in-vehicle air quality monitoring system using Deep Learning technique
    In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.
  • Publication
    Performance analysis of the microsoft kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques
    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
  • Publication
    Development of a scalable testbed for mobile olfaction verification
    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.
  • Publication
    Correction Model for Metal Oxide Sensor Drift Caused by Ambient Temperature and Humidity
    ( 2022)
    Abdulnasser Nabil Abdullah
    ;
    ; ; ; ;
    Zaffry Hadi Mohd Juffry
    ;
    Victor Hernandez Bennetts
    For decades, Metal oxide (MOX) gas sensors have been commercially available and used in various applications such as the Smart City, gas monitoring, and safety due to advantages such as high sensitivity, a high detection range, fast reaction time, and cost-effectiveness. However, several factors affect the sensing ability of MOX gas sensors. This article presents the results of a study on the cross-sensitivity of MOX gas sensors toward ambient temperature and humidity. A gas sensor array consisting of temperature and humidity sensors and four different MOX gas sensors (MiCS-5524, GM-402B, GM-502B, and MiCS-6814) was developed. The sensors were subjected to various relative gas concentrations, temperatures (from 16 °C to 30 °C), and humidity levels (from 75% to 45%), representing a typical indoor environment. The results proved that the gas sensor responses were significantly affected by the temperature and humidity. The increased temperature and humidity levels led to a decreased response for all sensors, except for MiCS-6814, which showed the opposite response. Hence, this work proposed regression models for each sensor, which can correct the gas sensor response drift caused by the ambient temperature and humidity variations. The models were validated, and the standard deviations of the corrected sensor response were found to be 1.66 kΩ, 13.17 kΩ, 29.67 kΩ, and 0.12 kΩ, respectively. These values are much smaller compared to the raw sensor response (i.e., 18.22, 24.33 kΩ, 95.18 kΩ, and 2.99 kΩ), indicating that the model provided a more stable output and minimised the drift. Overall, the results also proved that the models can be used for MOX gas sensors employed in the training process, as well as for other sets of gas sensors.
  • Publication
    2D LiDAR based reinforcement learning for Multi-Target path planning in unknown environment
    Global path planning techniques have been widely employed in solving path planning problems, however they have been found to be unsuitable for unknown environments. Contrarily, the traditional Q-learning method, which is a common reinforcement learning approach for local path planning, is unable to complete the task for multiple targets. To address these limitations, this paper proposes a modified Q-learning method, called Vector Field Histogram based Q-learning (VFH-QL) utilized the VFH information in state space representation and reward function, based on a 2D LiDAR sensor. We compared the performance of our proposed method with the classical Q-learning method (CQL) through training experiments that were conducted in a simulated environment with a size of 400 square pixels, representing a 20-meter square map. The environment contained static obstacles and a single mobile robot. Two experiments were conducted: experiment A involved path planning for a single target, while experiment B involved path planning for multiple targets. The results of experiment A showed that VFH-QL method had 87.06% less training time and 99.98% better obstacle avoidance compared to CQL. In experiment B, VFH-QL method was found to have an average training time that was 95.69% less than that of the CQL method and 83.99% better path quality. The VFH-QL method was then evaluated using a benchmark dataset. The results indicated that the VFH-QL exhibited superior path quality, with efficiency of 94.89% and improvements of 96.91% and 96.69% over CQL and SARSA in the task of path planning for multiple targets in unknown environments.
  • Publication
    Correction model for metal oxide sensor drift caused by ambient temperature and humidity
    ( 2022)
    Abdulnasser Nabil Abdullah
    ;
    ; ; ; ;
    Zaffry Hadi Mohd Juffry
    ;
    Victor Hernandez Bennetts
    For decades, Metal oxide (MOX) gas sensors have been commercially available and used in various applications such as the Smart City, gas monitoring, and safety due to advantages such as high sensitivity, a high detection range, fast reaction time, and cost-effectiveness. However, several factors affect the sensing ability of MOX gas sensors. This article presents the results of a study on the cross-sensitivity of MOX gas sensors toward ambient temperature and humidity. A gas sensor array consisting of temperature and humidity sensors and four different MOX gas sensors (MiCS-5524, GM-402B, GM-502B, and MiCS-6814) was developed. The sensors were subjected to various relative gas concentrations, temperatures (from 16 °C to 30 °C), and humidity levels (from 75% to 45%), representing a typical indoor environment. The results proved that the gas sensor responses were significantly affected by the temperature and humidity. The increased temperature and humidity levels led to a decreased response for all sensors, except for MiCS-6814, which showed the opposite response. Hence, this work proposed regression models for each sensor, which can correct the gas sensor response drift caused by the ambient temperature and humidity variations. The models were validated, and the standard deviations of the corrected sensor response were found to be 1.66 kΩ, 13.17 kΩ, 29.67 kΩ, and 0.12 kΩ, respectively. These values are much smaller compared to the raw sensor response (i.e., 18.22, 24.33 kΩ, 95.18 kΩ, and 2.99 kΩ), indicating that the model provided a more stable output and minimised the drift. Overall, the results also proved that the models can be used for MOX gas sensors employed in the training process, as well as for other sets of gas sensors.
  • Publication
    RF-Based moisture content determination in rice using machine learning techniques
    Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors’ knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
  • Publication
    Predictive analysis of In-Vehicle air quality monitoring system using deep learning technique
    In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.
  • Publication
    Real-Time In-Vehicle air quality monitoring system using machine learning prediction algorithm
    ( 2021)
    Chew Cheik Goh
    ;
    ; ;
    Hiromitsu Nishizaki
    ;
    ;
    Xiaoyang Mao
    ;
    ;
    Ericson Kanagaraj
    ;
    ;
    Md. Fauzan Elham
    This paper presents the development of a real-time cloud-based in-vehicle air quality monitoring system that enables the prediction of the current and future cabin air quality. The designed system provides predictive analytics using machine learning algorithms that can measure the drivers’ drowsiness and fatigue based on the air quality presented in the cabin car. It consists of five sensors that measure the level of CO2, particulate matter, vehicle speed, temperature, and humidity. Data from these sensors were collected in real-time from the vehicle cabin and stored in the cloud database. A predictive model using multilayer perceptron, support vector regression, and linear regression was developed to analyze the data and predict the future condition of in-vehicle air quality. The performance of these models was evaluated using the Root Mean Square Error, Mean Squared Error, Mean Absolute Error, and coefficient of determination (R2). The results showed that the support vector regression achieved excellent performance with the highest linearity between the predicted and actual data with an R2 of 0.9981.