Home
  • English
  • ÄŚeština
  • Deutsch
  • Español
  • Français
  • GĂ idhlig
  • Latviešu
  • Magyar
  • Nederlands
  • PortuguĂŞs
  • PortuguĂŞs do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŚeština
    • Deutsch
    • Español
    • Français
    • GĂ idhlig
    • Latviešu
    • Magyar
    • Nederlands
    • PortuguĂŞs
    • PortuguĂŞs do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Faculty of Mechanical Engineering & Technology (FTKM)
  4. Journal Articles
  5. Predictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique
 
Options

Predictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique

Journal
Atmosphere
Date Issued
2022-10-01
Author(s)
Abdul Syafiq Abdull Sukor
Universiti Malaysia Perlis
Cheik Goh Chew
Universiti Malaysia Perlis
Latifah Munirah Kamarudin
Universiti Malaysia Perlis
Mao X.
Nishizaki H.
Ammar Zakaria
Universiti Malaysia Perlis
Syed Muhammad Mamduh Syed Zakaria
Universiti Malaysia Perlis
DOI
10.3390/atmos13101587
Abstract
In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • deep learning | in-ve...

File(s)
research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies