Now showing 1 - 10 of 50
  • Publication
    Predictive analysis of in-vehicle air quality monitoring system using Deep Learning technique
    In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.
  • Publication
    A study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS
    ( 2018)
    Reena Thriumani
    ;
    ;
    Yumi Zuhanis Has-Yun Hashim
    ;
    Amanina Iymia Jeffree
    ;
    Khaled Mohamed Helmy
    ;
    ;
    Mohammad Iqbal Omar
    ;
    ; ;
    Krishna C. Persaud
    Background Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells. Method The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium. Results This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells. Conclusion The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.
  • Publication
    Development of a scalable testbed for mobile olfaction verification
    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.
  • Publication
    Improved classification of orthosiphon stamineus by data fusion of electronic nose and tongue sensors
    An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
  • Publication
    Improved Classification of Orthosiphon stamineus by Data Fusion of Electronic Nose and Tongue Sensors
    An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
  • Publication
    A hybrid approach of knowledge-driven and data-driven reasoning for activity recognition in smart homes
    Accurate activity recognition plays a major role in smart homes to provide assistance and support for users, especially elderly and cognitively impaired people. To realize this task, knowledge-driven approaches are one of the emerging research areas that have shown interesting advantages and features. However, several limitations have been associated with these approaches. The produced models are usually incomplete to capture all types of human activities. This resulted in the limited ability to accurately infer users’ activities. This paper presents an alternative approach by combining knowledge-driven with data-driven reasoning to allow activity models to evolve and adapt automatically based on users’ particularities. Firstly, a knowledge-driven reasoning is presented for inferring an initial activity model. The model is then trained using data-driven techniques to produce a dynamic activity model that learns users’ varying action. This approach has been evaluated using a publicly available dataset and the experimental results show the learned activity model yields significantly higher recognition rates compared to the initial activity model.
  • Publication
    Signal propagation analysis for low data rate wireless sensor network applications in sport grounds and on roads
    ( 2012)
    David L. Ndzi
    ;
    M. A. Mohd Arif
    ;
    ;
    Mohd Noor Ahmad
    ;
    ; ; ;
    Mohd F. Ramli
    ;
    This paper presents results of a study to characterise wire- less point-to-point channel for wireless sensor networks applications in sport hard court arenas, grass fields and on roads. Antenna height and orientation effects on coverage are also studied and results show that for omni-directional patch antenna, node range is reduced by a factor of 2 when the antenna orientation is changed from vertical to horizontal. The maximum range for a wireless node on a hard court sport arena has been determined to be 70m for 0dBm transmission but this reduces to 60m on a road surface and to 50m on a grass field. For horizontal antenna orientation the range on the road is longer than on the sport court which shows that scattered signal components from the rougher road surface combine to extend the communication range. The channels investigated showed that packet error ratio (PER) is dominated by large-scale, rather than small-scale, channel fading with an abrupt transition from low PER to 100% PER. Results also show that large-scale received signal power can be modeled with a 2nd or der log-distance polynomial equation on the sport court and road, but a 1st order model is sufficient for the grassfield. Small-scale signal variations have been found to have a Rice distribution for signal to noise ratio levels greater than 10 dB but the Rice K-factor exhibits significant variations at short distances which can be attributed to the influence of strong ground reflections.
  • Publication
    Signal propagation in aquaculture environment for wireless sensor network applications
    ( 2012) ;
    David Lorater Ndzi
    ;
    Mohd F. Ramli
    ;
    ;
    Mohd Noor Ahmad
    ;
    ; ;
    Yanyan Yang
    This paper presents results of signal propagation studies for wireless sensor network planning in aquaculture environment for water quality and changes in water characteristics monitoring. Some water pollutants can cause widespread damage to marine life within a very short time period and thus wireless sensor network reliability is more critical than in crop farming. This paper shows that network coverage models and assumptions over land do not readily apply in tropical aquaculture environment where high temperatures are experienced during the day. More specifically, due to high humidity caused by evaporation, network coverage at 15 cm antenna height is better than at 5 m antenna heights due to the presence of a superrefraction (ducting) layer. For a 69 m link, the difference between the signal strength measured over several days is more than 7 dBm except under anomaly conditions. In this environment, the two-ray model has been found to provide high accuracy for signal propagation over water where there are no objects in close proximity to the propagation path. However, with vegetation in close proximity, accurate signal variation predication must consider contributions from scattered and diffused components, taking into account frequency selective fading characteristics to represent the temporal and spatial signal variations.
  • Publication
    2D LiDAR based reinforcement learning for Multi-Target path planning in unknown environment
    Global path planning techniques have been widely employed in solving path planning problems, however they have been found to be unsuitable for unknown environments. Contrarily, the traditional Q-learning method, which is a common reinforcement learning approach for local path planning, is unable to complete the task for multiple targets. To address these limitations, this paper proposes a modified Q-learning method, called Vector Field Histogram based Q-learning (VFH-QL) utilized the VFH information in state space representation and reward function, based on a 2D LiDAR sensor. We compared the performance of our proposed method with the classical Q-learning method (CQL) through training experiments that were conducted in a simulated environment with a size of 400 square pixels, representing a 20-meter square map. The environment contained static obstacles and a single mobile robot. Two experiments were conducted: experiment A involved path planning for a single target, while experiment B involved path planning for multiple targets. The results of experiment A showed that VFH-QL method had 87.06% less training time and 99.98% better obstacle avoidance compared to CQL. In experiment B, VFH-QL method was found to have an average training time that was 95.69% less than that of the CQL method and 83.99% better path quality. The VFH-QL method was then evaluated using a benchmark dataset. The results indicated that the VFH-QL exhibited superior path quality, with efficiency of 94.89% and improvements of 96.91% and 96.69% over CQL and SARSA in the task of path planning for multiple targets in unknown environments.