Options
Nor Azizah Parmin
Preferred name
Nor Azizah Parmin
Official Name
Nor Azizah, Parmin
Alternative Name
Parmin, N. A.
Parmin, Nor Azizah
Parmin, Nor A.
Main Affiliation
Scopus Author ID
57195835481
Researcher ID
S-6303-2019
Now showing
1 - 10 of 16
-
PublicationPotentials of MicroRNA in Early Detection of Ovarian Cancer by Analytical Electrical Biosensors( 2022-01-01)
;Nadzirah S. ;Salimi M.N. ;Muhammad Nur Afnan Uda ;Rozi S.K.M. ;Rejali Z. ;Afzan A. ;Azan M.I.A. ;Yaakub A.R.W. ;Hamzah A.A.Dee C.F.The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer. -
PublicationDesigning DNA probe from HPV 18 and 58 in the E6 region for sensing element in the development of genosensor-based gold nanoparticles( 2022-10-01)
;Jaapar F.N. ;Halim N.H.A. ;Halim F.S. ;Ruslinda A.R. ;Muhammad Nur Afnan Uda ;Nadzirah S. ;Rejali Z. ;Afzan A.Zakaria I.I.The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5′ COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3′, while 5′COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3′ as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection. -
PublicationDesign and Fabrication of Multichannel PDMS Microfluidic( 2021-12-14)
;Muhammad Nur Afnan UdaThivina V.Microfluidic delivers miniaturized fluidic networks for processing liquids in the microliter range. In the recent years, lab-on-chip (LOC) is become a main tool for point-of-care (POC) diagnostic especially in the medical field. In this paper, we presented a design and fabrication on multi disease analysis using single chip via delivery of fluid with the multiple transducers is the pathway of multi-channel microfluidic based LOC's. 3 in 1 nano biosensor kit was attached with the microfluidic to produce nano-biolab-on-chip (NBLOC). The multi channels microfluidic chip was designed including the micro channels, one inlet, three outlet and sensor contact area. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The LOC system was designed using Design Spark Mechanical software and PDMS was used as a medium of the microfluidic. The microfluidic mold and PDMS microfluidic morphological properties have been characterized by using low power microscope (LPM), high power microscope (HPM) and surface profiler. The LOC system physical was experimental by dropping food coloring through the inlet and collecting at the sensor contact area outlet. -
PublicationElectrochemical DNA Biosensor based on 30 nM Gold Nanoparticle Modified Electrode by Electro Less Deposition for Human Papillomavirus (HPV) 18 E6 Region( 2020-07-09)
;Koo Siew Kim N.S. ;Rejali Z. ;Afzan A. ;Muhammad Nur Afnan UdaThe aim of this work was to develop a novel, simple, inexpensive, sensitive an electrochemical DNA biosensor based on interdigitated electrodes (IDEs) integrated gold nanoparticle modified electrode by electro less deposition for HPV 18. The biosensor was designed with a 30 mer E6 region of HPV 18 DNA modified probe. The E6 region has been used for their clinical importance properties and suitable as recognition biomarker region. Three different target types were tested which complementary target, non-complementary target and mismatch target. All target were analyzed for detection of HPV 18 in early stages by using Dielectric Analyzer (DA), Alpha-A High-performance Frequency Analyzer, Novocontrol Technologies, Handsagen, Germany associated with the software package Windeta. Complementary target gives a positive result in HPV detection, while non-complementary and mismatch target give negative results. IDE device with 5 nm gap sizes has demonstrated a high performance towards the detection of HPV18 ssDNA target by modified with 30 nm gold nanoparticle. The electrochemical biosensor showed better performance compared to agarose gel electrophoresis assay. This technology can be used as a new and attractive sensor development for detection of virus infection in human bodies. -
PublicationEvaluation and Optimization of Genomic DNA Extraction from Food Sample for Microfluidic Purpose( 2020-03-18)
;Muhammad Nur Afnan UdaShaharuddin S.N.A.Contamination of various food samples became one of the critical issues in food pathogen infection. Food pathogen can be detected by using digital polymerase chain reaction (PCR) and sequencing. These methods were reliable but consuming and take a longer time for detection. The present work describes the innovation to develop a technology to extract double-stranded deoxyribonucleic acid (dsDNA) from food samples and then denatured dsDNA into and single-strand DNA (ssDNA) for further use on the chip using microfluidic device. Microfluidic device is a lab-on-chip device that consist of microfluidic channels that provide paths for biomolecules to flow to individual point of care. DNA extraction is the process by which DNA is separated from proteins, membranes, and other cellular material contained in the cell from which it is recovered. Lysis solution is used in the process of extraction the DNA to break up the cells containing DNA from protein and other cellular materials. This extraction firstly be done in the most labour-intensive in obtaining the DNA biomolecules. Extraction methods may require an overnight incubation, may be a protocol that can be completed in minutes or a couple of hours by using a commercial kit. The disadvantages of the laboratory and commercial kit is due to time-consuming, poor cost-effectiveness, the need to use big laboratory and a complicated process which need an expertise to conduct the experiment and interpret the data. This research is proposed to design and fabricate a microfluidic device that has DNA extraction capabilities. In this research DNA extraction using a commercial kit will be used as a comparison for the quality of the result. The microfluidic device can be used in health care delivery system and will help the doctors in diagnostic process to identify disease of a patient rapidly. Other than that, the output extracted from microfluidic device will be used for DNA probe target interaction for diagnostic kit. The major advantage of microfluidic device is that it consumes less time compared to the conventional chemical methods. -
PublicationNovelty Studies on Amorphous Silica Nanoparticle Production from Rice Straw Ash( 2020-07-09)
;Muhammad Nur Afnan Uda ;Halim N.H.Anbu P.Turning waste product into the valuable resources is the best alternative way to overcome the waste management issue. Generally, rice is grown and planted twice a year where a lot of rice by-products have been produced after harvesting the matured paddy. Rice straw is one of turning waste products into the valuable resources and to manage the environmental issues. Generally, rice is grown and planted twice a year where a lot of rice by-products are produced. Rices straw is one of the rice by-products, generated roughly 0.7-1.4 kg per kilograms of harvested milled rice. With the nanotechnological approach, silica particles at nano-size can be produced using the incinerated rice straw. In addition to that, this research will report the synthesis, characterization and adsorption analysis towards the heavy metal removal. -
PublicationVoltammetric DNA Biosensor for Human Papillomavirus (HPV) Strain 18 Detection( 2020-07-09)
;Mhd Akhir M.A. ;Rejali Z. ;Afzan A. ;Muhammad Nur Afnan UdaThis research was developed to focus on the study of the voltammetric DNA biosensor for the detection of HPV strain 18. In this research, electrical DNA biosensor was expected to detect HPV strain 18 more efficiently by using electrical characterization. In this project, device inspection was conducted to make sure the functional of the gold interdigitated electrode (IDE) by using Scanning Electron Microscope (SEM). 3-Aminopropyl Triethoxysilane (APTES) solution was used for the process of surface modification to form the amine group on the surface of the device to facilitate the attachment of the DNA probe. In this project, synthetic DNA sample and DNA from the saliva of several Biosystems Engineering students were used as the target DNA. The current-voltage (I-V) electrical characterization was conducted to detect the presence of HPV strain 18 in both DNA samples. As the results, perfect alignment between the electrodes on the IDE was detected under SEM. Surface modification of the biosensor successfully conducted which is the covalent bond between APTES and DNA probe increase the electrical. Synthetic DNA shows the presence of HPV strain 18 while there was no HPV strain 18 detected in the DNA from saliva samples. -
PublicationProduction and characterization of graphene from carbonaceous rice straw by cost-effect extraction( 2021-05-01)
;Halim N.H. ;Muhammad Nur Afnan UdaAnbu P.This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with –C=C– and O–H stretching at peaks of 1644 cm−1 and 3435 cm−1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 °C, with a final reduction of ~ 11%. -
PublicationNew Development Quantification Methods for Salt Iodine and Urinary Iodine Using Microfluidics Based Nanotechnology( 2020-03-18)
;Nur Hulwani IbrahimMuhammad Nur Afnan UdaIn Malaysia, the first Iodine Deficiency Disorders (IDD) survey was conducted in 1996 and it was discovered that Peninsular Malaysia did not have IDD problem until latter studies showed goitre occurrence of 34.7% in Hulu Langat district and urinary iodine lower than the adequate level of (100-199 ug/L) in Perak and Pahang states (Selamat et al., 2010). Baseline and periodical sampling of children and pregnant woman urine and imported salt commodities for the consumption of the population is mandatory for iodine measurement. Thus, development of quantitative methods of measurement of salt and food iodine is crucial for implementation of the USI program nationwide. In this study, interdigitated electrode (IDE) biosensor, a rapid, sensitive and selective method has been developed to determine the iodine content in both urine and salt. This method includes functionalization and silanization step using 3-aminopropyl triethoxysilane (APTES). The I-V characterization of IDE biosensor was performed using (Keithley 2450), Kickstart software and Probestation. It measures the amount of current flow through IDE which is directly proportional to the concentration of iodine in both urine and salt. Hence, IDE biosensor is proven to be a rapid, selective, sensitive method and can be developed as a new nanotechnology for the elimination of Iodine Deficiency Disorders (IDD) among children and pregnant woman. -
PublicationMorphological Analysis of Fabricated 5.0 μM Interdigitated Electrode (IDE)( 2021-12-14)
;Muhammad Nur Afnan Uda ;Halim N.H. ;Hashim M.K.R.Anbu P.The aim of this research is to study the morphological analysis of fabricated Interdigitated Electrode (IDE). This device electrode was physically characterized using 3D nano profiler, scanning electrode microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscope (AFM). Based on this analysis, IDE pattern was analyzed thoroughly based on the IDE pattern specifications with 5 μM finger gap and this research significantly will stand as a platform quantify the biomolecules in further analysis.