Now showing 1 - 10 of 23
  • Publication
    Improved classification of orthosiphon stamineus by data fusion of electronic nose and tongue sensors
    An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
  • Publication
    Development of portable, application specific electronic nose for agriculture
    Research groups around the world are working to develop electronic nose systems that are able mimicking the functions and operations of the human nose. The instrument is used to identify and classify different types of odour or smell. The instrument will complement the existing odour assessment techniques; human sensory panels and Gas Chromatography Mass Spectrum (GC-MS) analysis which require long training time and detailed operating procedures. However most of the generic instruments are of laboratories type which are costly and may not operate efficiently for every possible application. The instruments’ broad non-specific sensor arrays’ will limit the detection capabilities. The existing portable instruments in the market are still lacking in reliability, data processing capabilities and quite costly. Therefore, the purpose of this research is to develop a portable Application Specific Electronic Nose (ASEN) to improve their capabilities. The developed instrument uses specific selected sensor arrays which were identified based on experiment and key volatile compounds of the target odorant. Humidity and temperature sensor are also being included in the instrument to measure the environmental condition. The instrument utilises multivariate statistical analysis (PCA, LDA and KNN) and Artificial Neural Network (ANN) as well as an embedded ANN classification algorithm for the data processing. This will increase the instrument’s capability while the portability will minimise the size, cost and operational complexity. A commercial instrument (Cyranose C320 from Smith Detection) is used to evaluate the performance of the instrument. The instrument was successfully developed, tested and calibrated odour samples with variable concentrations. The instrument provides a feasible alternative for non-destructive testing system for the odour samples. The results revealed that the developed instrument is able to identify, discriminate and classify the odour samples with an acceptable percentage of accuracy. This will contribute significantly to acquiring a new and alternative method of using the instrument for agriculture applications i.e., plant disease detection, food quality assurance and poultry farm malodour monitoring. The future works include the development of specific sensors for the application and simplified the training process i.e., performs on-line ANN training by the instrument itself.
  • Publication
    Development of aquaculture water quality real-time monitoring using multi-sensory system and internet of things
    Water quality is an important parameter for the health and growth of aquatic species in aquaculture farming system. The threshold values of the water main parameters should be monitored continuously. Contaminated aquaculture water will affect the health, growth and ability of animals to survive. In addition, it will also affect the harvesting yields based on the number and size of the animals. To overcome this problem, the main water parameters, namely temperature, pH, Dissolved Oxygen and Electrical Conductivity are monitored in real-time using a multi-sensory system and the internet of things. Data is acquired by a developed instrument and transmitted wirelessly via a GPRS/GSM module to a web server database. The data obtained are analyzed and monitored through the website and in real-time. Therefore, corrective action could be taken immediately for contaminated water, indicated by water parameters out of range. The system also provides an early signal to farmers based on a specific range of water quality parameters values. This will help farmers make adjustments to ensure appropriate water quality for the aquaculture system.
      5  27
  • Publication
    Fuzzy logic based prediction of micronutrients demand for harumanis mango growth cycles
    Harumanis is a famous green eating mango cultivar that has been commercially cultivated in Malaysia's state of Perlis. A variety of nutrients are found in soil, all of which are necessary for plant growth. Micronutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K) are essential for Harumanis mango (Mangifera Indica) to growth. The importance of soil fertility in achieving high plant productivity and quality cannot be overstated. It should be used in a moderate amount and in a balanced manner. Predicting appropriate nutrients and the right timing to satisfy the tree's demands is critical. The aim of this study is to create a fuzzy logic-based system to analyse the results of soil tests for nitrogen (N), phosphorus (P), and potassium (K) in the Harumanis mango orchard. The interpreted data are used to estimate N-P-K nutrient levels and indicate the optimal fertilizer solution and application timing for each Harumanis growth stages. The system utilizes Fuzzy Logic Control (FLC) to predict the nutrients demand for Harumanis mango growth. Results shows the system able to calculate and predict values of required N-P-K fertilizer for optimal growth. Thus, assist farmers in predicting the proper amount of N-P-K to apply to Harumanis mango soil.
      1
  • Publication
    Cloud-based System for University Laboratories Air Monitoring
    Indoor air such as house, shopping complex, hospital, university, office and hotel should be monitor for human safety and wellbeing. These closed areas are prone to harmful air pollutants i.e. allergens, smoke, mold, particles radon and hazardous gas. Laboratories in university are special room in which workers (student, technician, teaching/research assistants, researcher and lecturer) conduct their works and experiment. The activities and the environment will generate specific air pollutant which concentration depending to their parameters. Anyone in the environment that exposure to these pollutants may affect safety and health issue. This paper proposes a study of development of a cloud-based electronic nose system for university laboratories air monitoring. The system consists of DSP33-based electronic nose (e-nose) as nodes which measure main indoor air pollutant along with two thermal comfort variables, temperature and relative humidity. The e-noses are placed at five different laboratories for acquiring data in real time. The data will be sent to a web server and the cloud-based system will process, analyse using Neuro-Fuzzy classifier and display on a website in real time. The system will monitor the laboratories air pollutants and thermal comfort by predict the pollutant concentration and dispersion in the area i.e. Air Pollution Index (API). In case of air hazard safety (e.g., gas spills detection and pollution monitoring), the system will alert the security by activate an alarm and through e-mail. The website will display the API of the area in real-time. Results show that the system performance is good and can be used to monitor the air pollutant in the university laboratories.
      28  1
  • Publication
    A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration
    ( 2011-08) ; ; ;
    Norazian Subari
    ;
    Nazifah Ahmad Fikri
    ;
    ;
    Mohd Noor Ahmad
    ;
    Mahmad Nor Jaafar
    ;
    ; ; ;
    Supri A. Ghani
    The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
      1  68
  • Publication
    Improved Classification of Orthosiphon stamineus by Data Fusion of Electronic Nose and Tongue Sensors
    An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
      1  33
  • Publication
    Improved maturity and ripeness classifications of magnifera indica cv. Harumanis mangoes through sensor fusion of an electronic nose and acoustic sensor
    In recent years, there have been a number of reported studies on the use of non-destructive techniques to evaluate and determine mango maturity and ripeness levels. However, most of these reported works were conducted using single-modality sensing systems, either using an electronic nose, acoustics or other non-destructive measurements. This paper presents the work on the classification of mangoes (Magnifera Indica cv. Harumanis) maturity and ripeness levels using fusion of the data of an electronic nose and an acoustic sensor. Three groups of samples each from two different harvesting times (week 7 and week 8) were evaluated by the e-nose and then followed by the acoustic sensor. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to discriminate the mango harvested at week 7 and week 8 based solely on the aroma and volatile gases released from the mangoes. However, when six different groups of different maturity and ripeness levels were combined in one classification analysis, both PCA and LDA were unable to discriminate the age difference of the Harumanis mangoes. Instead of six different groups, only four were observed using the LDA, while PCA showed only two distinct groups. By applying a low level data fusion technique on the e-nose and acoustic data, the classification for maturity and ripeness levels using LDA was improved. However, no significant improvement was observed using PCA with data fusion technique. Further work using a hybrid LDA-Competitive Learning Neural Network was performed to validate the fusion technique and classify the samples. It was found that the LDA-CLNN was also improved significantly when data fusion was applied.
      1  30
  • Publication
    Analysis of Soil Nutrient (NPK) Test Value - Relative yield Relationship for Harumanis Mango using Modification Arcsine-Log Calibration Curve.
    The cultivation of Harumanis mango (Mangifera indica) is of significant agricultural importance, especially in tropical regions like Malaysia, where it is renowned for its exceptional taste and quality. Maximizing mango yield and maintaining fruit quality are vital aspects of successful cultivation, relying on optimal soil nutrient management, particularly nitrogen (N), phosphorus (P), and potassium (K). In this research, the soil nutrient test value - relative yield relationship for Harumanis mango is investigated using a modification arcsine-log calibration curve. Traditional linear calibration curves may not fully capture the nonlinearities observed in crop responses, potentially leading to inaccurate nutrient requirements for optimal yield. By employing the innovative modification arcsine-log calibration curve, a more precise and robust relationship between soil nutrient test values and relative mango yield is established. Soil samples are collected from mango orchards, and NPK levels are measured using standardized laboratory techniques, alongside corresponding relative mango yields. This study advances precision agriculture by offering precise soil nutrient recommendations for mango farmers. Utilizing calibrated curves improves mango yield, minimizes nutrient waste, and encourages sustainable farming. In conclusion, the modified arcsine-log calibration curve reveals vital insights for optimal Harumanis mango production, benefiting the industry and sustainability.
      1
  • Publication
    Nutrient Requirements and Growth Response of Harumanis Mango (Mangiferaindica L.) during Vegetative Shoot Growth Stages: A Mitscherlich Law Analysis
    This study investigates the nutrient requirements of Harumanis mango (Mangifera indica L) during different vegetative shoot growth stages by analyzing the soil nutrient test value-relative growth relationships. The research utilizes the Mitscherlich Law to model the response of mango yield in relation to varying nutrient levels. The data came from experimental plots, and the results show the asymptotic behavior of mango yield for three essential nutrients: nitrogen (N), phosphorus (P), and potassium (K). For vegetative shoot growth1, the asymptotic yield was estimated at 665.5 with a decline rate of -3.39 concerning N, -2.17 concerning P, and -1.35 concerning K. The coefficient of determination (R2) was 0.934, indicating a high goodness of fit for the model. Similar trends were observed for vegetative shoot growth2 and 3, where the asymptotic yields and nutrient decline rates varied accordingly. This study provides crucial insights into Harumanis mango nutrient needs across growth stages, aiding orchard management for sustainable yields. Applying the Mitscherlich Law enhances our understanding of how nutrients affect mango growth. These findings support targeted fertilization, boosting productivity and orchard efficiency. Future research can explore more growth factors and long-term nutrient impacts.
      3  25