Now showing 1 - 10 of 23
  • Publication
    Superpixels-based automatic density peaks and fuzzy clustering approach in COVID-19 lung segmentation
    (IEEE, 2023-12)
    Ooi Wei Herng
    ;
    ;
    Fatin Nabilah Shaari
    ;
    Clustering algorithms that rely on minimizing an objective function suffer from the drawback of requiring manual setting of the number of clusters. This limitation becomes particularly evident when applied to image segmentation, where the large number of pixels can lead to memory overflow issues. To overcome this challenge, a reference of Automatic Fuzzy Clustering Framework (AFCF) for image segmentation method has been used as the comparison to the Density Peaks Clustering (DPC) algorithm. AFCF used superpixel algorithm to reduce the spatial information of data during computation, DPC algorithm to generate decision graph, and prior entropy-based fuzzy clustering (PEFC) algorithm to achieve fully automatic segmentation method in determining the number of cluster and the clustering result. In this study, 50 open-source healthy, COVID-19 and pneumonia infected radiographs dataset are acquired from the Kaggle and Github. The radiographs dataset that segmented by DPC is down sampling to 100*100 pixels due to overloading computation. At the end of the image segmentation, a segmentation performance evaluation is conducted based on sensitivity, specificity, accuracy, precision, recall, F-score and time consumed. The result shows that AFCF algorithm has the better overall performance with higher accuracy of 92.48% and F-score 0.9455. Meanwhile, the most highlighted evaluation index is drop to the time consume comparison, AFCF has around 2.7 times faster processing speed compare to DPC algorithm.
  • Publication
    Abnormality Detection Approach in Smart Homes using Case-based Reasoning
    ( 2020-06-01) ;
    Rossi Setchi
    ;
    Ze Ji
    Today, the population of elderly people is dramatically increasing. To help with the problem, smart homes provide technologies and services that can help elderly people to live independently and comfortably in their own homes. One such service in smart homes is the detection of abnormal situations based on individuals' daily routine. This is important as some situations can lead to serious health issues if they have not been detected in the early stage. This paper presents a conceptual model for abnormality detection using case-based reasoning. It utilizes previous cases, which are built from a publicly available smart home dataset. To evaluate the performance, the cases are divided into two case-based sizes which contain seven and fourteen days of monitoring task. To avoid bias, the performance is also measured against two voluntary individuals who have no knowledge of the dataset. The results show that the system is able to detect abnormal situations with the best accuracy of 81.3%.
      1  16
  • Publication
    A Review: Deep Learning Classification Performance of Normal and COVID-19 Chest X-ray Images
    COVID19 chest X-ray has been used as supplementary tools to support COVID19 severity level diagnosis. However, there are challenges that required to face by researchers around the world in order to implement these chest X-ray samples to be very helpful to detect the disease. Here, this paper presents a review of COVID19 chest X-ray classification using deep learning approach. This study is conducted to discuss the source of images and deep learning models as well as its performances. At the end of this paper, the challenges and future work on COVID19 chest X-ray are discussed and proposed.
      5  47
  • Publication
    Smart Waste Management System
    ( 2022-01-01)
    Ab Wahab M.N.
    ;
    Tay S.C.
    ;
    ;
    Mohamed A.S.A.
    ;
    Mahinderjit Singh M.
    The increasing amount of waste in landfill has created a serious environmental problem which demands a more reliable solution in handling the collection of wastes. To this date, recycling is one of the solutions to manage the waste as it collects and processes recyclable materials into new products instead of throwing the trash to the landfill. However, the consciousness of recycling in our society is still devastatingly lower than expected as people are faced with many challenges that impede them to recycle. One of the challenges is to segregate the waste according to its group. People are still having difficulty to clearly distinguish recyclable materials due to the lack of recycling knowledge. Thus, this paper aims to develop a system that can separate the waste automatically and channel them to the proper bins. To do that, a camera is used to capture the image of the waste. Then, image classification using deep learning model is used to classify different types of wastes. The developed model is then embedded in Raspberry Pi and a servo motor is used to direct the waste to the respective bins for real-world implementation. Experimental results show that the proposed system can identify the categories of waste within the accuracy of 77–85%. This system is expected to deliver the importance of recycling and cultivate recycling practices to the public and finally reduced waste generation on land.
      1  15
  • Publication
    Development of In-situ Sensing System and Classification of Water Quality using Machine Learning Approach
    ( 2022-01-01) ;
    Mohamad Naim Muhamad
    ;
    Ab Wahab M.N.
    Quality of water applied to the agriculture sector is one of the factors for agriculture farming to be successful. The use of bad quality irrigation water can cause soil problems. In general, determining water quality model is one of the many interests as it can be used to classify the conditions of water. This project focuses on developing the in-situ sensing system of water quality sensors that can detect parameters of water quality such as pH level, electric conductivity, temperature and total dissolved solid. To validate the approach, there are three types of water samples in a dataset that was collected which include water pipes, soap water and drain water. The types of machine learning models used for classification process are Artificial Neural Network (ANN), Support Vector Machine (SVM), and Decision Tree. The performance showed that SVM model was the highest, ANN was intermediate, and Decision Tree was the lowest. This shows that the SVM model of machine learning approach is the most suitable to be used as the classification model to classify the status of water quality.
      1
  • Publication
    Predictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique
    In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.
      2  22
  • Publication
    An IoT-based automated gate system using camera for home security and parcel delivery
    The Internet of Things (IoT) has made it possible to set up smart home security and parcel delivery. Therefore, this work proposed an automated gate system using camera for home security and parcel delivery with integrated Internet of Things (IoT). An automated gate system will capture and identify the image of face visitors and delivery riders for admin authentication to open the gate and parcel box. This proposed work is controlled and monitored through mobile apps. The primary purpose and inspiration of this work are to help the delivery rider put the parcel into the parcel box provided if there is no person in the house, and the owner can pick up the parcel without being broken or robbed when she/he comes back home. When the delivery rider presses the button near the gate, the admin will receive the notification "Someone coming,". The admin will click the "okay"button and the system will take a picture using the camera in Blynk App. After the admin verifies that is the delivery rider, the admin will open the box and the delivery rider can access the parcel door box and put the goods inside the box. Another advantage of this work, it also allows familiar people to access our home. The same process with the delivery rider where the visitor needs to press the bell and the admin needs to verify before the visitor can access the single gate. The result indicates that this work is able to monitor and control the gate and parcel door box using an IoT application.
      29  4
  • Publication
    Pattern Clustering Approach for Activity Recognition in Smart Homes
    In recent years, studies in activity recognition have shown an increasing amount of attention among other researchers. Activity recognition is usually performed through two steps: activity pattern clustering and classification processes. Clustering allows similar activity patterns to be grouped together while classification provides a decision-making process to infer the right activity. Although many related works have been suggested in these areas, there is some limitation as most of them are focused only on one part of these two processes. This paper presents a work that combines pattern clustering and classification into one single framework. The former uses the Self Organizing Map (SOM) to cluster activity data into groups while the latter utilizes semantic activity modelling to infer the right type of activity. Experimental results show that the combined method provides higher recognition accuracy compared to the traditional method of machine learning. Furthermore, it is more appropriate for a dynamic environment of human living.
      1
  • Publication
    Predictive analysis of in-vehicle air quality monitoring system using Deep Learning technique
    In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.
      1  20
  • Publication
    Pattern Clustering Approach for Activity Recognition in Smart Homes
    In recent years, studies in activity recognition have shown an increasing amount of attention among other researchers. Activity recognition is usually performed through two steps: activity pattern clustering and classification processes. Clustering allows similar activity patterns to be grouped together while classification provides a decision-making process to infer the right activity. Although many related works have been suggested in these areas, there is some limitation as most of them are focused only on one part of these two processes. This paper presents a work that combines pattern clustering and classification into one single framework. The former uses the Self Organizing Map (SOM) to cluster activity data into groups while the latter utilizes semantic activity modelling to infer the right type of activity. Experimental results show that the combined method provides higher recognition accuracy compared to the traditional method of machine learning. Furthermore, it is more appropriate for a dynamic environment of human living.
      3  27