Options
Saidatul Norlyana Azemi
Preferred name
Saidatul Norlyana Azemi
Official Name
Saidatul Norlyana, Azemi
Alternative Name
Azemi, Saidatu Norlyana
Azemi, S. N.
Azemi, S. A.
Saidatul, N. A.
Azemi, Saidatul N.
Azemi, Saidatul Norlyna
Main Affiliation
Scopus Author ID
55204806400
Researcher ID
DUZ-0499-2022
Now showing
1 - 10 of 12
-
PublicationDevelopment of multiband fractal planar inverted F antenna (F-PIFA) for mobile applications( 2009)In the past few years, demand in unification of wireless hardware has propelled new development of antenna. With the advances on antenna technology, it becomes attractive to enhance the capabilities of antenna in many areas such as mobile communication and wireless application. The requirements of ubiquitous antenna are small in size, simple, robust, have a shielding mechanism, multisystem and wide bandwidth. The reason is, currently, there are five bands that are assigned for world mobile services. Due to the aforementioned issues, a novel Fractal planar inverted F antenna (F-PIFA) based on the self affinity design is presented in this research. This research is conducted in order to develop an antenna with low cost, small in size, high performance, and capable to operate at multiple frequency bands. The F-PIFA development processes include specification definition, selection of the dielectric material and construction of prototype using CST software tools. In conducting this research, the production of prototypes is divided into three stages. The first stage is to develop three different iteration of F-PIFA and to evaluate its performance. The second stage is to fabricate, measure the antenna performance as well as the SAR value. Finally, the design is investigated and improved for future works. This research has successfully produced an antenna with good efficiency without degrading bandwidth and gain of the F-PIFA. The antenna has a total dimension of 27mm x 27mm is designed and optimized in order to receive GSM (Global System for Mobile Communication) and UMTS (Universal Mobile Telecommunication System) and HiperLAN (HigH Performance Radio LAN) with the frequency range from 850-960 MHz, 1900 MHz to 2100 MHz, 1885 to 2200 MHz for 3G and 4800 MHz to 5800 MHz for HiperLAN respectively. This omni-directional antenna invented here have 65-90% efficiency with peak gain value that is 3.57 dB, and be able to produce less than 2W/kg SAR value.
-
PublicationDual Band Planar Inverted F Antenna (PIFA) with L-Shape Configuration( 2017)
;Mohamad khlouf Munzer ;Ping Jack SohMohd Faizal JamlosOne of the most used antennas in mobile devices is planar inverted F antenna (PIFA). PIFA can be design in dual band frequencies due to the coverage of the wireless service in a mobile device that requires a multiple frequencies. However, the consideration of technical operation has to be combined with an evaluation of the antenna radiation impact on the users. A procedure of PIFA work in GSM (867-960MHz) and GSM (1710-1899MHz) is done using CST Software. The dual band frequency response is obtained by means of an insertion of an L-shaped slot, which is use to tune the operation frequencies. The prototype of the antenna is fabricated as model by CST Software and evaluated. It is found out that the PIFA antenna has a good efficiency, bandwidth as well as produce a maximum gain for the antenna. A key and innovative research is still underway to broaden performance parameters of the antenna. -
PublicationGain Enhancement of CPW Antenna for IoT Applications using FSS with Miniaturize Unit Cell( 2021-07-26)
;Azhari M.S.B.A.Jiunn N.K.Wireless connectivity is a critical enabler for many IoT applications. Antennas are often required to be installed inside the device cover, which usually occurs in small sizes with optimal performance. On the other hand, a suitable antenna should also have high efficiency, gain and adequate bandwidth covering the desired frequency range. Here, we proposed new type of Frequency Selective Surface (FSS) with miniaturized resonator element to enhance the gain of an CPW antenna. Furthermore, the miniaturization of the Frequency Selective Surface unit cell is attained by coupling the two meandered wire resonators. The wire resonator is separated by thin and single substrate layer. The structure of the FSS is shown to have a FSS unit cell dimension that is miniaturized to 0.057λ. The CPW antenna size is only 28.8mm × 46.5mm operating at 2.45 GHz frequency. With the additional of the FSS, the antenna's gain reaches up from 1.8 dBi to 2.6 dBi with omnidirectional radiation pattern. -
PublicationGain Enhancement of Rectangular Dielectric Resonator Antenna Using Air Gap( 2023-10-06)
;Shanmuka Rooban GunasekaranSaravanan Nathan LurudusamyThis paper presents a gain enhanced rectangular dielectric resonator antenna (DRA) using air gap. The air gap placed under the dielectric resonator antenna and above the ground plane. A gain of 6.605 dBi obtained from the DRA with air gap while gain of 5.956 dBi is achieved by DRA without air gap. The size of the antenna is approximately 50 mm by 40 mm, thus it can be considered a compact design. This antenna designed using Rogers RO4003 substrate and the DRA material is Eccostock HIK. All the design and simulation results are conducted using CST Studio Suite 2019 software. Based on the result, it shows that the antenna operates with reflection coefficient of less than -10 dB at the desired operating frequency range, centered at 3.5 GHz. The inclusion of air gap proved that it can enhance the gain value of the DRA.2 3 -
PublicationLaundryMama: Humanising Laundry Tasks using Laundry Management System and Laundry-On-Demand Mobile Applications( 2020-03-20)
;Mei L.Y.Laundry Management System and Laundry-On-Demand Mobile Applications are presented in this paper. Using conventional laundry service method, customer is not informed about the laundry process stage, does not have option to arrange the preferred laundry pick up time for the deliveryman to pick up the unwashed laundry from the address provided by customer and the laundry ordering paper forms are often lost in transit between customer and admin. Therefore, a laundry management system software and laundry on demand mobile application is demanded to solve the problems. The software development is performed using an open source developing platform Android Studio IDE and Firebase Real-time Database, Authentication, Cloud Messaging and Cloud Storage. The method used to develop the software is waterfall modelling and two characters are involved, which is admin and customer. The two characters functions are separated in two different applications. A Laundry Management System Software is developed for admin to manage, make order and monitor the business. A Laundry-On-Demand Mobile Application is developed for customer to make order and monitor the order. These both applications can receive notification from each other. The data can be correctly written and read from Firebase Real-time database, Firebase Authentication, Firebase Cloud Storage. The developed software and mobile application are evaluated in term of its functionality. -
PublicationDevelopment of U-Shape Slot Wearable Antenna for In-Body Communications( 2020-03-20)
;Kamaruddin N.A.The ability to have a communication with devices implanted inside a human body will cause a great improvement in current wireless medical applications technology. Wireless Capsule Endoscopy (WCE) is a medical device that could send images from inside of human's intestines to the sensor outside the body. However, this device has few disadvantages like its location cannot be detected once it entered the body and it also cannot be control from outside the body. Considering these factors, an antenna that has the ability to penetrate into human body tissues for in-body communication is proposed. UWB system has considered as the solution for future in-body communication devices since current standard does not allow high data rate wireless connections between implanted nodes. Low part of UWB frequency band which is 3.1 GHz to 5.0 GHz is used in this research in order to reduce the attenuation through the body tissues as the frequency increase. The design of this antenna has taken in consideration of the propagation medium which is the human body tissues. Simulation for the designed antenna was done in CST Software. The size of this antenna is designed to be compact and wearable on human body. The substrate used for this antenna is cotton to ensure comfort once it is placed on the human body. The results that are considered in this research are the S11, directivity and gain of the antenna. Both simulation results and measured results are compared to evaluate the ability of this antenna. -
PublicationDesign of Passive RFID Tag Using Frequency Selective Surface with Polarization Insensitive( 2023-10-06)
;Ibrahim N.A.Abdul Aziz M.E.RFID is not a new technology. It has been applied in various industries such as for wearable applications. Common RFID tags especially for those that have been designed and are available are not independent of the incident receiver angle. Numerous wearable antennas on the market are only designed for a certain received angle. For example, a wearable RFID antenna is used in medical as a pulse reading detector. If the patient makes any movement, the patient's pulse reading is no longer accurate or there may be no pulse reading. Hence, the purpose of this project is to design and RFID antennas using Frequency Selective Surface, FSS for wearable applications that are independent towards the incident angle and small in size. In this project, several antennas design with Frequency Selective Surface (FSS) is proposed. The design for this antenna is round, square, and hexagonal. This antenna has an operating frequency from 2.4 GHz to 5.8GHz, bandwidth efficiency> 50%, dielectric constant 1.30, independent incident angle up to 60 degrees, and has a high gain of around 2 to 3dB. -
PublicationA Review of Antennas for Picosatellite Applications( 2017)
;Abdul Halim Lokman ;Ping Jack Soh ;Herwansyah Lago ;Symon K. Podilchak ;Suramate Chalermwisutkul ;Mohd Faizal Jamlos ;Prayoot AkkaraekthalinSteven GaoCube Satellite (CubeSat) technology is an attractive emerging alternative to conventional satellites in radio astronomy, earth observation, weather forecasting, space research, and communications. Its size, however, poses a more challenging restriction on the circuitry and components as they are expected to be closely spaced and very power efficient. One of the main components that will require careful design for CubeSats is their antennas, as they are needed to be lightweight, small in size, and compact or deployable for larger antennas. This paper presents a review of antennas suitable for picosatellite applications. An overview of the applications of picosatellites will first be explained, prior to a discussion on their antenna requirements. Material and antenna topologies which have been used will be subsequently discussed prior to the presentation of several deployable configurations. Finally, a perspective and future research work on CubeSat antennas will be discussed in the conclusion. -
PublicationApplication of FSS for Microstrip Antenna for Gain Enhancement( 2020-03-20)
;Zaid F.N.M.In this present paper, a dual-band microstrip patch antenna (MPA) using frequency selective surface (FSS) is proposed. The dual-band MPA is designed using the rectangular shaped patch with an elliptical slot at the center of the patch and full ground plane. The FSS in this paper act as a reflection plane which is loaded onto the dual-band MPA in order to improve the gain of the antenna at higher band. The FSS is obtained by the periodic array of 3 5-unit cell in the x-y direction, which based on the amalgamation of a square and circular loop elements. After merging the FSS, the gain and return loss at 5 GHz increased to 0.915 dB and -25.08 dB respectively. The dual-band MPA is simulated using the FR-4 substrate with a thickness of 1.6 mm and a relative permittivity of 4.4. The overall size of the MPA and FSS is relatively compact and easy to fabricate. The proposed antenna can be used in WiMAX and WLAN applications. -
PublicationA Free-Space measurement system for microwave materials at Kuband( 2022-01-01)
;Sivakumar Renukka ;Lee Y.S. ;Jack Soh P.You K.Y.One of the non-resonant techniques is the free-space measurement technique, which is popular due to its many advantages compared to the other techniques. It allows the transmission and reflection measurements without any physical contact with the sample. This paper discusses the free-space material measurement system in Ku-band which uses the NRW algorithm and Keysight (Formerly Agilent) 85071E software in determining the dielectric properties of materials. The permittivity and permeability of Teflon, FR4, PVC, ABS, Acrylic, polypropylene, polycarbonate, and epoxy were determined using free space measurement setup. For the first, a free-space measurement for Ku-Band is setup. It consists of a vector network analyzer, two horn antennas, sample holder, and Keysight 85071E software. The different role of transmission and reflection measurements on the achievable results is analyzed about experimental uncertainties and different noise scenarios. Results from the two strategies are analyzed and compared. Good agreement between simulation, measurement, and literature was obtained.