Journal Articles

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 143
  • Publication
    Effect of Solid-To-Liquids and Na2SiO3-To-NaOH ratio on metakaolin membrane geopolymers
    ( 2021)
    Masdiyana Ibrahim
    ;
    ; ;
    Ahmad Syauqi Sauffi
    ;
    Petrica Vizureanu
    Geopolymer is synthesized by polycondensation of SiO4 and AlO4 aluminosilicate complexes, tetrahedral frames linked with shared sialate oxygen. This paper studies the effect of the solids-to-fluids (S/L) and Na2SiO3/NaOH proportions on the preparing of metakaolin inorganic membrane geopolymer. By consolidating a mixture of metakaolin with sodium hydroxide, sodium silicate and foaming agent, the geopolymer membrane was made in required shape about 1 cm and cured at 80°C for 24 hours. After the curing process, the properties of the samples were tested on days 7. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution were utilized as an alkaline activator with a NaOH fixation fixed at 10 M. The geopolymer inorganic membrane tests were set up with various S/L proportions (0.8, 1.0, 1.2 and 1.4) and Na2SiO3/NaOH proportions (0.5, 1.0, 1.5, 2.0 and 2.5). Aluminium (Al) powder as a foaming agent was used to create bubbles in porous structure and provide details on the development of membrane geopolymers. This metakaolin membrane, based on the geopolymer, was synthesized by a suspension that depends on the fast cementing mechanism of high-temperature slurries. Porous geopolymeric circles provided a homogeneous composition and quantitative distribution of pores. The water absorption, density, impact toughness testing and microstructure analyses were studied. However, considering the promising results, an adjustment in the mix design of the metakaolin inorganic membrane geopolymer mixtures could increase their mechanical properties without negatively affecting the mechanical properties and porosity, making these sustainable materials a suitable alternative to traditional porous cement concrete
  • Publication
    Study of zeolite phase made from rice husk ash and sidrap clay
    ( 2022)
    M. Armayani
    ;
    Musdalifa Mansur
    ;
    Reza Asra
    ;
    Muh Irwan
    ;
    Dhian Ramadhanty
    ;
    Subaer Subaer
    ;
    ;
    Ikmal Hakem A. Aziz
    ;
    B. Jeż
    ;
    M. Nabiałek
    Zeolite has been successfully synthesized from clay and rice husk ash in the form of powder by using the hydrothermal method with variations in chemical compositions of alkaline solution and the amount of rice husk ash. The clay raw material was obtained from the Sidrap area of South Sulawesi and rice husk ash is obtained from the burning pile of rice husks. Sidrap clay and rice husk ash were activated using an alkaline solution of NaOH and varied rice husk ash and the addition of AlCl3. The addition of AlCl3, an alkaline solution of NaOH and H2O was used in the amount of 25.5 grams and variations of rice husk ash were 2.5 grams and 6.5 grams. Meanwhile, without the addition of AlCl3, an alkaline solution of NaOH and H2O was used for 20.5 grams and variations of rice husk ash from 2.5 grams and 6.5 grams. Then the mixture was then put into an autoclave with a temperature of 100°C for 3 hours. The basic material used in the manufacture of zeolite is carried out by X-ray Fluorescence (XRF) characterization to determine the constituent elements of basic material, which showed the content of SiO2 was 45.80 wt% in the clay and 93.40% in the rice husk ash. The crystalline structure of the zeolite formed was characterized by X-Ray Diffraction (XRD). It was found the resulting zeolite were identified as Zeolite-Y, Hydrosodalite, and ZSM-5. The microstructure properties of the resulting zeolite were determined by using Scanning Electron Microscopy (SEM).
  • Publication
    Phase analysis of different liquid ratio on Metakaolin/Dolomite geopolymer
    ( 2021)
    Ahmad Syauqi Sauffi
    ;
    ; ;
    Masdiyana Ibrahim
    ;
    ;
    Fakhryna Ahmad Zaidi
    Geopolymer is widely studied nowadays in various scope of studies. Some of the ongoing studies are the study of the various materials towards the geopolymer strength produced. Meanwhile, some of the studies focus on the mixing of the geopolymer itself. This paper discussed the phase analysis of metakaolin/dolomite geopolymer for different solid to the liquid ratio which was, 0.4, 0.6, 0.8, and 1.0, and the properties that affected the geopolymer based on the phases. The constant parameters in this study were the percentage of metakaolin and dolomite used. The metakaolin used was 80% meanwhile dolomite usage was 20%. Besides that, the molarity of NaOH used is 10M and the alkaline activator ratio used is 2.0. All the samples were tested at 28 days of curing. The results show that the 0.8 solid to the liquid ratio used gave better properties compare to other solid to liquid ratio. The phases analyzed were quartz, sillimanite, mullite, and faujasite. The 0.8 S/L ratio shows the better properties compared to others by the test of phase analysis, compressive strength morphology analysis, and functional group analysis.
  • Publication
    Mechanical properties and toxicity characteristic of petroleum sludge incorporated with palm oil fuel ash and quarry dust in Solidification/Stabilization Matrices
    ( 2022)
    Mohd Ikhmal Haqeem Hassan
    ;
    Aeslina Abdul Kadir
    ;
    Nor Amani Filzah Mohd Kamil
    ;
    Nurul Nabila Huda Hashar
    ;
    Noor Amira Sarani
    ;
    Badaruddin Ibrahim
    ;
    Kahirol Mohd Salleh
    ;
    This paper discussed the treatment of Malaysian petroleum sludge by incorporating palm oil fuel ash (POFA) to replace Portland cement and quarry dust (QD) replaces sand in the solidification /stabilization (S/S) method. Preliminary studies, including chemical composition, heavy metal characterization, density test, compressive strength test, and toxicity characteristic leaching procedure (TCLP), were done to evaluate POFA and QD suitability in S/S matrices. The 10% replacement of POFA recorded a considerable density value ranging from 1500 kg/m3 to 1660 kg/m3 . As for S/S matrices containing petroleum sludge, the results indicate the possibility to of encapsulating the sludge in the matrices up to 10%. The highest strength of S/S matrices with petroleum is from PS5% samples with 15.61 MPa at 28 days. The toxicity characteristic of heavy metals from the S/S matrices was below the permissible limit set by USEPA. This investigation could be an alternative solution for petroleum sludge, POFA, and QD disposal and has excellent potential for replacing other treatment approaches employed at the advanced treatment stage for petroleum refinery effluents.
  • Publication
    Poly-ferric sulphate as superior coagulant: A review on preparation methods and properties
    ( 2023)
    Nurul Aqilah Mohamad
    ;
    Sofiah Hamzah
    ;
    Nur Hanis Hayati Hairom
    ;
    Mohd Salleh Amri Zahid
    ;
    Khairol Annuar Mohd Ali
    ;
    Che Mohd Ruzaidi Ghazal
    ;
    Andrei Victor Sandu
    ;
    ;
    Petrica Vizureanu
    Iron-based coagulants are widely used in wastewater treatment due to their high positively charged ion that effectively destabilise colloidal suspension, and thus contribute to the formation of insoluble flocs. Ferric chloride, ferrous sulphate, and poly-ferric sulphate (PFS) are examples of iron-based coagulants that are highly available, and are beneficial in producing denser flocs, thereby improving settling characteristics. This work aims to review the preparation methods of PFS and critically discuss the influence of these methods on the PFS properties and performance as a chemical coagulant for water and wastewater treatment. In polymeric form, PFS is one of the pre-hydrolysing metallic salts with the chemical formula [Fe2(OH) n (SO4)3−n/2] m (where, n < 2, m > 10) and has a dark brownish red colour as well as is more viscous and less corrosive. PFS has an amorphous structure with small traces of crystallinity, containing both hydroxyl and sulphate functional groups. It has been applied in many industries including water or wastewater treatment which is also discussed in this study. It has the ability to remove pollutants contained in water or wastewater, such as turbidity, colour, chemical and biological oxygen demand, phosphorus, and others. This study also provides a review on the combination of PFS with other chemical coagulants or flocculants in the coagulation/flocculation process, and also flocs formed after a more stable treatment process.