Conference Publications
Permanent URI for this collection
Browse
Browsing Conference Publications by Author "H. Ismail"
Results Per Page
Sort Options
-
PublicationProcessing, tensile and morphological characteristics of polylactic acid/chitosan biocomposites prepared by melt compounding technique( 2020)
;N. H. I. Kamaludin ;H. Ismail ;A. RusliA. A. N. GunnyBiodegradable polymers of polylactic acid (PLA) and chitosan (Cs) has a great potential as alternative candidates to replace conventional synthetic plastic apart to reduce the plastic waste pollution due to the unique properties of superior mechanical strength, feasible processability and rapid degradation. In this work, PLA/Cs biocomposites were prepared via melt compounding and compression moulding techniques in the absence of any plasticizer and additive. The effect of chitosan loading (2.5, 5, 7.5, 10 php) on processing, tensile and morphological characteristics of PLA/Cs were evaluated using internal mixer, universal testing machine and field emission scanning electron microscopy (FESEM), respectively. Processing characteristic indicates PLA/Cs biocomposites demonstrated higher processing torque in comparison to neat PLA due to the increase in melt viscosity and decrease in chain mobility of the polymeric materials. Tensile test results revealed that the maximum strength (54.60 ± 0.51 MPa) and tensile elastic modulus (2.67 ± 0.01 GPa) was attained by PLA/2.5Cs biocomposite. In fact, the addition of chitosan content up to 10 php results in significant decreased in tensile strength and elongation at break of 23.38 ± 0.37 MPa and 0.96 ± 0.04 %, respectively. This is supported by the electron micrograph observation of the PLA/2.5Cs tensile fractured surfaces that exhibits uniform dispersion and good interfacial adhesion between chitosan and PLA matrix which signifies higher tensile properties. However, more agglomeration and poor filler-matrix interaction was observed with further addition of chitosan content of above 7.5 php which implies deterioration in tensile properties. The results suggest that the incorporation of low chitosan loading improve the processing, tensile and polymer compatibility in PLA/Cs biocomposites.21 20