Now showing 1 - 10 of 20
  • Publication
    Power Generation Improvement using Active Water Cooling for Photovoltaic (PV) Panel
    ( 2021-01-01) ; ; ;
    Nalini C.
    ;
    Edaris Z.L.B.
    ;
    Hasanuzzaman M.
    Photovoltaic (PV) cooling systems are commonly used to improve photovoltaic panels power generation and efficiency. Photovoltaic (PV) panels require irradiance to generate power, although increasing irradiance is often correlated with increasing temperature. These rapid increases of temperature in photovoltaic (PV) panels severely affect the power conversion operation. With a proper cooling process on its surface, a solar photovoltaic (PV) system can operate at a higher efficiency. This research aims to study the power improvement of active water-cooling on photovoltaic (PV) panels. A fixed minimum water flow of 5.80 l/min is sprayed onto the panel's front surface to reduce the temperature. The sprayed water created a thin water film and managed to reduce the temperature. Other than that, there is also reference photovoltaic (PV) panel, which is a panel without any cooling system. The outputs compared are the module temperature, maximum output power, open circuit voltage, and short circuit current. As the irradiance starts increasing, the panel temperature also begins to spike. However, with active water cooling, the temperature was able to be reduced by 37.67% during the day's hottest temperature. This reduction of temperature creates power improvement to the cooled panel up to 253W, compared to the reference panel output of only 223W. During the overheating of a photovoltaic (PV) panel, the open circuit voltage was found to be the most affected. This increase in power with active water cooling can potentially have a massive impact on large-scale photovoltaic (PV) panel installations.
  • Publication
    Risk evaluation on D power press operation report at D manufacturing company in Malaysia
    ( 2021-05-03) ; ;
    Osman M.S.
    ;
    Ling C.J.
    ;
    Li F.H.
    ;
    Yee L.S.
    ;
    Lee M.J.
    ;
    Shing S.C.
    This paper reports a case study of accidents or incident analysis in the power press machine at a press machine area in a manufacturing company. Hazard identification, cause and effect, risk level and solutions was assessed. There are total of seven hazards identified in the power press machine. These seven hazards consist of six medium level of risk and one low level of risk respectively. These listed hazards in the workplace will directly affect the worker in the view of safety and health. However, there are some solutions regarding these hazards had been proposed. By carry out some discussion, certain solution is suggested to solve the hazard in the workplace. The suggested solution shown in the HIRARC analysis can be said as simple solution which the company can conduct it successfully. It can help to reduce or solve the hazards that will protect their workers well. This will also increase their worker's productivity and comfortability in work. Pareto analysis had shown clearly with the higher risk hazards consist in the workplace that can let the company to solve the hazards with priority according to the analysis shown. Pareto analysis will help to solve the problem effectively. All these solutions suggested will only take about 2 months to solve all the hazards.
  • Publication
    Optimizing Fused Deposition Modeling with ANN: Material Consumption and Tensile Strength Predictions
    Conventional modelling was once favored for process modelling for its straightforward nature and simplicity. However, conventional modelling is incapable of modelling complex processes such as fused deposition modelling (FDM). This study aims to model an accurate FDM process using an artificial neural network (ANN) to predict material consumption and tensile strength based on layer height, infill density, printing temperature and printing speed. The design of the experiment (DOE) was constructed using face-centered central composite design (FCCCD) yielding a total of 78 specimens. The material consumption was measured by weighting the specimen using a densimeter while the tensile strength of the specimen was tested using a universal testing machine (UTM). Best ANN structures were first identified in a trained network before being modelled for comparison. Models were compared using the lowest mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and highest coefficient of determination (R2). The best predictive model structure for material consumption is 4-19-14-1 with the lowest MSE of 0.00096 while the best predictive model structure for tensile strength is 4-16-15-12-1 with the lowest MSE of 0.005274145.
      4
  • Publication
    Modeling, experimental investigation and real-time control of active water cooling system for photovoltaic module
    Photovoltaic (PV) cells are integral in harnessing solar energy, yet their performance is hindered by excessive heat generation, impacting efficiency and sustainability. Addressing the challenge of efficiency loss in photovoltaic (PV) cells due to overheating, this study focuses on optimizing active water cooling control for PV modules. The aim is to develop a dynamic, sustainable model and integrate a PID controller tuned by Sine Cosine Algorithm (SCA), targeting optimal operating temperatures. This study introduces a dynamic model and a closed-loop control system to manage PV cell temperature, investigating the correlation between water flow and temperature regulation. Experimental data is gathered using a pseudo-random binary sequence (PRBS) as an excitation signal, forming the foundation of an Auto Regressive eXogenous (ARX) model. The closed-loop system incorporates a PID controller and tuned using the Sine Cosine Algorithm (SCA) to optimize performance. The resulting model is rigorously validated through experimental investigation, demonstrating its precision in capturing the system’s dynamics. Moreover, the implementation of a controller-based cooling system substantiates the model’s practical efficacy. The research demonstrates significant improvements when implementing a controller-based water-cooling system for photovoltaic (PV) modules. Compared to the baseline scenario without cooling, the system achieves a 34.5% reduction in average PV temperature (from 59.2°C to 38.9°C) and a 9.46% increase in average power output (from 196.7W to 215.3W). Moreover, this system utilizes only 248.8 liters of water, marking a substantial 64% decrease in water consumption compared to traditional free-flow cooling methods, which use 790.9 liters. The research demonstrates that the controller-based cooling approach is a sustainable option, delivering power output comparable to the free-flow method, yet significantly lowering water consumption. This research signifies a turning point for sustainability, offering an efficient and water-conscious approach for enhancing PV system performance, a crucial step toward a greener and more environmentally responsible energy future.
      32  12
  • Publication
    ARx modeling of flexible beam system using bat algorithm
    This paper describes the development of dynamic model of flexible beam system using system identification method based on nature inspired algorithm i.e. bat algorithm. At first, input-output data from the experimental rig of flexible beam were collected such that input signal is taken from piezo actuator and output signal from the laser displacement sensor. Then, linear parametric model structure is accomplished using auto regressive with exogenous inputs (ARX). The optimal parameters of the ARX model are identified using bat algorithm. The best parameter setting estimation is selected based on the best fit criterion i.e mean square error (MSE). The identified model is compared with the model from conventional estimation approach. Simulation results show that bat algorithm can outperform the least square algorithm in parametric modelling of the flexible beam.
      1  30
  • Publication
    Optimizing Surface Roughness of PLA Printed Parts using Particle Swarm Optimization (PSO)
    ( 2023-01-01)
    Hadi Irazman H.N.
    ;
    ; ; ;
    Nor A.M.
    ;
    As'arry A.
    Fused Deposition Modelling (FDM) is an additive manufacturing-based rapid prototyping technology that has gained widespread attention due to its ability to produce complex geometries with relatively low cost and fast production time. However, the surface finish of the FDM printed parts can be adversely affected by the selection of input parameters, such as layer height, infill density, print temperature, etc. This study aims to investigate the impact of these parameters on surface roughness and optimize the FDM process to improve surface finish. Two optimization approaches were employed in the study to address this problem, namely the Response Surface Methodology (RSM) and the particle swarm optimization (PSO) method. The impacts of four factors, layer height, printing speed, infill density, and print temperature, on the surface roughness of Polylactic Acid (PLA) printed parts were evaluated. A Face-centred Central Composite Design (FCCD) was used to reduce the number of experiments and to optimize the process. Both RSM and PSO methods were employed to find the best combination of process parameters for minimum surface roughness. The results of the experiment indicated that the optimal settings for minimum surface roughness were a layer height of 0.10 mm, printing speed of 30.36 m/s, infill density of 77.10 %, and print temperature of 195.12 °C, resulting in a surface roughness value of 1.31 µm. From these findings, the PSO optimization method was found to be more effective than the RSM method, showing a significant improvement in surface roughness with a reduction of 13.5 %.
      1  11
  • Publication
    Application of Differential Evolution (DE) Optimization Method in CNC Turning Process for Surface Roughness
    This paper presents the optimization of cutting speed, feed rate and depth of cut during CNC turning process of ASTM A36 Mild steel in order to minimize the surface roughness. The default parameters setting in some cases of machining process using conventional optimization technique does not guarantee the best surface roughness quality of the machined part. Therefore, in this study, a non-conventional method, Differential Evolution (DE) optimization, has been developed to address this problem. At first, a regression model using Response Surface Method (RSM) was developed using experimental data. The experiment was designed by using DOE method. Central composite design was applied in Design Expert software for building a second order (quadratic) model for minimum surface roughness. Then, DE algorithm was implemented using Matlab programming. The performances of both conventional and non-conventional techniques were compared through experimental validation tests. The results showed that optimal parameters setting values provided by DE obtained better results than RSM. Thus, in this study, DE can be considered as an efficient and effective technique to achieve a better surface roughness.
      1  24
  • Publication
    Modelling and evolutionary computation optimization on FDM process for flexural strength using integrated approach RSM and PSO
    Fused deposition modelling (FDM) is a modern rapid prototyping (RP) technique due to its potential to replicate a concept modelling, prototypes tooling and usable parts of complex structures within a short period of time. However, proper parameter selection is crucial to produce good quality products with reasonable mechanical properties, such as mechanical strength. In this study, four important process parameters, such as layer thickness, printing speed, print temperature and outer shell speed, are considered. These parameters are studied to observe their relationship towards the flexural strength of the polylactic acid (PLA) printed parts. The experimental design is conducted based on the central composite design in response surface methodology (RSM). Statistical analysis is performed using analysis of variance (ANOVA), in which the correlation between input parameters and output response is analysed. Next, the evolutionary algorithm optimisation approach, i.e., particle swarm optimisation (PSO), is applied to optimise the process parameters based on the regression model generated from the ANOVA. Results obtained from the PSO method are experimentally validated and compared with those of the traditional method (i.e., RSM). The flexural strength from experimental validation obtained using PSO exhibits an improvement of approximately 3.8%. The optimum parameters for layer thickness (A), print speed (B), print temperature (C) and outer shell speed (D) of approximately 0.38 mm, 46.58 mm/s, 185.45 Â°C and 29.59 mm/s result in flexural strength of 96.62 MPa.
      9  27
  • Publication
    Modeling coupled electric drives systems using a modified narmax model
    The nonlinear auto-regressive moving average with exogeneous input (NARMAX) model known as one of superior type of models to represent a wide class of dynamic systems. In this paper, a modified NARMAX is proposed in modeling dynamic system. The aim is to investigate the performance of the modified NARMAX model and compared to the conventional NARMAX model for modeling CE8 coupled electric drives system. Multi-objective optimization differential evolution (MOODE) algorithm is used as a model structure selection algorithm to obtain the final model from both approached models. Model predicted output (MPO) test is applied in order to reveal the performance of each model. Through the MPO test, it is concluded that the modified NARMAX model offers a better predicted output than conventional NARMAX model.
      2
  • Publication
    Review of Control Strategies for Improving the Photovoltaic Electrical Efficiency by Hybrid Active Cooling
    Photovoltaic (PV) cooling systems are used widely in order to increase the PV efficiency. Most review paper was published for the role, design and cooling techniques of PV applications, there is a lack of collected and organised information regarding the latest and the newest updates on control strategies for PV cooling control systems. Hence, this paper presents a comprehensive review of PV cooling control strategies discussing the latest research works during the years from 2010 to 2022. PV/T hybrid cooling types are highlighted, followed by the main focus of this paper an extensive review of the control schemes for diverse types of PV cooling systems that have been carried out. This paper summarises most of the related work and also pays a special focus on research trends regarding the control of PV cooling systems that have been previously published in the literature. This review paper will be helpful to new researchers when identifying research directions for this particular area of interest.
      23  1