Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Power Generation Improvement using Active Water Cooling for Photovoltaic (PV) Panel
 
Options

Power Generation Improvement using Active Water Cooling for Photovoltaic (PV) Panel

Journal
2021 4th International Conference on Electrical, Computer and Communication Technologies, ICECCT 2021
Date Issued
2021-01-01
Author(s)
Mohamad Shukor Abdul Rahim
Universiti Malaysia Perlis
Mohammad Faridun Naim Tajuddin
Universiti Malaysia Perlis
Mohd Sazli Saad
Universiti Malaysia Perlis
Nalini C.
Edaris Z.L.B.
Hasanuzzaman M.
DOI
10.1109/ICECCT52121.2021.9616889
Abstract
Photovoltaic (PV) cooling systems are commonly used to improve photovoltaic panels power generation and efficiency. Photovoltaic (PV) panels require irradiance to generate power, although increasing irradiance is often correlated with increasing temperature. These rapid increases of temperature in photovoltaic (PV) panels severely affect the power conversion operation. With a proper cooling process on its surface, a solar photovoltaic (PV) system can operate at a higher efficiency. This research aims to study the power improvement of active water-cooling on photovoltaic (PV) panels. A fixed minimum water flow of 5.80 l/min is sprayed onto the panel's front surface to reduce the temperature. The sprayed water created a thin water film and managed to reduce the temperature. Other than that, there is also reference photovoltaic (PV) panel, which is a panel without any cooling system. The outputs compared are the module temperature, maximum output power, open circuit voltage, and short circuit current. As the irradiance starts increasing, the panel temperature also begins to spike. However, with active water cooling, the temperature was able to be reduced by 37.67% during the day's hottest temperature. This reduction of temperature creates power improvement to the cooled panel up to 253W, compared to the reference panel output of only 223W. During the overheating of a photovoltaic (PV) panel, the open circuit voltage was found to be the most affected. This increase in power with active water cooling can potentially have a massive impact on large-scale photovoltaic (PV) panel installations.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • front cooling | photo...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies