Options
Mohamed Elshaikh Elobaid Said Ahmed
Preferred name
Mohamed Elshaikh Elobaid Said Ahmed
Official Name
Mohamed Elshaikh Elobaid , Said Ahmed
Alternative Name
Ahmed, Mohamed Elshaikh Elobaid Said
Said Ahmed, Mohamed Elshaikh Elobaid
Elobaid, Mohamed Elshaikh
Main Affiliation
Scopus Author ID
57190012447
Researcher ID
R-7502-2019
Now showing
1 - 10 of 28
-
PublicationReal-time drowsiness detection system for driver monitoring(IOP Publishing, 2020)
;M Arunasalam ; ; ;N F AzaharNowadays, the rate of road accidents due to microsleep has been alarming. During microsleep, people might doze off without realizing it. For many decades, drowsiness detection system for vehicles was not among the major concerns though it turns out as one of imperative features that could have avoid microsleep and thus should be implemented in all vehicles in order to ensure safety of drivers and other vehicles on the road. To the best of our knowledge, enforcements on driving restriction during drowsiness state is yet to be implemented. The absence of such system in the current transportation systems expose drivers to great danger especially at night because accidents are highly likely to happen at night due to drowsy and fatigue drivers. Therefore, this project proposes a real-time drowsiness detection system for vehicles, featuring ignition lock to reduce accidents. An eye blink sensor is embedded in a wearable glasses and heart beat sensor is used to detect drowsiness level of drivers. The system also includes SMS notification system to relatives or friends with location details of the drowsy driver. This project is able to detect and react based on 3 levels of drowsiness by alerting the driver through buzzer. Ignition lock will be applied when high level of drowsiness is detected. Consequently, the vehicle will be slowed down and eventually stopped when dangerous level of drowsiness is detected as a safety precaution. -
PublicationOverview of chameleon mechanism in B-MAC protocol for WSN(Learning and Library Sciences (LLS), 2020-12-15)
;Dafhalla, Alaa K.Y. ;Sid Ahmed, Nada M.O. ;Isam, Hiba M. -
PublicationDesign of smart assist device for the visually impaired( 2024-02-08)
; ; ;Salimin H.A.M.Vision impaired individuals suffer from the lack of surrounding information which makes moving around very hard for them. In this work, a smart belt is designed to assist the blind in detecting obstacles and holes in front of them. Upon detection, the smart belt will notify the user by means of a textual audio message. The device utilizes a Raspberry Pie single-board computer as well as two ultrasonic sensors as the main component. Test results indicate that the system manages to provide accurate measurement of the distance to the obstacles with +- 1cm error. The system has been designed to cater gait movement as well as the variability of flat surface. This is important to avoid false positive and false negative alarm to the user. Using the belt is very convenient as compared to the white stick. It is easy to wear on the waist and once activated the device shall auto-calibrate its distance to the ground before obstacle/hole detection mode is activated automatically a few seconds later.1 -
PublicationGaining Speedup with OpenMP Schedule Type under Imbalance Workload( 2023-10-06)
; ; ;Qun N.H. ;Rahman M.Hossen M.A.Despite OpenMP being the defacto standard for parallel programming on shared memory system, little is known on how its schedule type and chunk size effect the parallel performance of shared memory multicore processor. Performance analysis in the literature have overlooked the effects of different schedule type and chunk size, possibly it was simply not the focus of their research. Often, the researchers did not specify the schedule type explicitly. This has resulted in the default way of assigning the loop iterations among threads. By default, the static schedule is used and the size of chunk which is the ratio of total number of iterations to the number of threads is implemented. Contrary to above, this research proposes a guideline to select the appropriate schedule type and chunk size for achieving optimum performance on different shared memory multicore platform for balanced and imbalance workload. Three multicore technology namely Intel Core i5-2410M, AMD A12-9700P and ARM Cortex-A53 are used for this work. The speedup obtained after turning on/off certain multicore technologies and a selected number of active cores per processor is analyzed. The result of analysis enables the user to justify and exercise trade-offs in selecting OpenMP schedule type and chunk size, and also in choosing the multicore technologies to meet the desired performance gain. Results analyzed over various configurations of multicore platform and workload suggested that under certain constraint different schedule types and chunk sizes have led to better speedup.1 24 -
PublicationHyper-threading technology: Not a good choice for speeding up CPU-bound code( 2017-01-03)
;Ng Hui Qun ; ; ; ;Mostafijur R. ;Puteh SaadHyper-threading (HT) technology allows one thread to execute its task while another thread is stalled waiting for shared resource or other operations to complete. Thus, this reduces the idle time of a processor. If HT is enabled, an operating system would see two logical cores per each physical core. This gives one physical core the ability to run two threads simultaneously. However, it does not necessarily speed up the performance of a parallel code twice the number of physical cores. This happens when two threads are trying to access the shared CPU resource. The instructions could only be executed one after another at any given time. In this case, parallel CPU-bound code could attain a little improvement in terms of speedup from HT on a quad-core platform, which is Intel i5-2410M@2.30GHz.35 3 -
PublicationThe impact of inner-parameters B-MAC protocol by Taguchi method for WSN( 2020-03-15)
;Yousif A.K. ;The MAC protocols play an important role in the performance of wireless sensor network (WSN). MAC protocols are controlled with set of parameters from being dragged to undesired situation such as reduce the power consumption, listening idle, and overhead. This inner- parameters have direct impact on the efficiency of a MAC protocols and overall network performances. The impacts of theses parameters on reduce the power consumption are less considered. In the literature, a lot of studies concentrates on introducing a new protocols to reduce the power consumption for WSN. This paper aims to analysis the inner- parameters of MAC protocols for WSN power consumption by using Taguchi Delta Analysis (TDA). Moreover, the measure of inner - parameters is very important to find the optimal values to reduce the power consumption. This paper utilized Taguchi method to analysis the impact of B-MAC protocol parameters in WSN scenarios by exploits Taguchi delta analysis. Further, four inner - parameters are investigated in a simulation platform. Moreover, simulation experiments are carried out by OMNET++5 to prove the work in this paper. The obtained results show that inner- parameters B-MAC inner- protocol reduce the power consumption of WSN for two different scenarios.50 1 -
PublicationGPSR Routing Performances Enhancement for VANET networks with Taguchi Optimization Mechanism( 2021-07-26)
; ;Dafhalla A.K.Y. ;Routing mechanism plays an important role in the performances of Vehicular Ad Hoc Networks (VANET). Hence, various routing mechanisms are proposed to enhance VANET performances, however few researches are dedicated to optimize these routing mechanisms. In this paper an optimization mechanism is proposed to improve the performances of Greedy Perimeter stateless Routing (GPSR) protocol. Design of Experiments is used along with Taguchi Optimization method to fine tune GPSR internal routing parameters against VANET network scenarios. The target of optimization in this work is set to network performances including network throughput, delay and packet delivery ration (PDR). These targets are mathematically combined to form a single optimization target. A simulation experiments are performed to evaluate VANET performances. Obtained results showed that the proposed optimization improves the VANET performances in terms of throughput, PDR and delay. Further real-time integration of Optimization and routing mechanism can improve network performances.1 -
PublicationDrunken drive detection with smart ignition lock( 2021-01-01)
;Muthukarpan S.L.A. ; ; ; ;Rahim M.K.A. ;Khalib Z.I.A.Drink and drive issue have become solemnly that needs immediate attention. This is due to drivers’ ignorance towards road rules and regulations and their selfish attitude that caused loss of innocent lives. Although previously there is a drunk detecting mechanism using breathalyzer but it isn’t suitable for current fast-paced lifestyle. Therefore, to overcome these issues, this system is proposed. This system is fixed on vehicle’s steering to measure alcohol concentration reading using MQ-3 sensor from the driver’s exhaled breath. If the driver found to be drunk beyond the threshold level of 400 ppm, then ignition lock is activated and the car engine does not start till alcohol concentration falls to a safe level. Or, if the driver consumes an alcoholic drink while driving, upon exceeding permissible limit, the car slows down till it stops. Then, the location of the vehicle is tracked and sent as Google Map integrated link via text message to authorized unit. Simultaneously, the car buzzer goes off while the car slows down so that surrounding road users are aware of the driver’s condition and drives at a distance. The proposed detection system is highly potential to be implemented for reducing the drunk and drive accidents.1 -
PublicationDevelopment of vision based smart gripper for material handling using Internet of Things( 2022-01-01)
; ;Zainur M.I. ;Aman A.M.Robotic grippers have becoming an emerging trend due to their boundless applications in industrial automation. Nowadays, the deployment of vision based smart gripper for material handling in industrial applications remains challenging and ongoing research. As the Internet of Things (IoT) becomes more commercialized, the various concept of IoT have been integrated with the gripper due to efficient usage. Therefore, this project proposes the development of vision-based sensor of smart gripper for material handling in industrial applications that integrates with the IoT. The rationale of integrating IoT to vision based smart gripper is that it allows authenticated users to log in from any device, anywhere, and view video or images from vision based smart gripper in real-time for critical material handling. This system incorporates a vision sensor camera that acts as an "eye"to automatically detect and recognize the object with different weights and shapes and send the information to the robot for the next task. This smart gripper adopts a force sensor mounted into the fingertip to control the force applied when working with a wide range of objects with different weights. As for the electronic system, power module, communication and control module, sensor and actuator as well as user interface module have been adopted and integrated into the system. In the software development system, user interface configuration was developed through mobile application in which it communicates with Raspberry Pi B+ camera to serve as IoT platform. A series of experiments shows that the vision based gripper using IoT able to detect and recognize the objects and then send the information/command directly to the robot to execute grasping and lifting phase of the object to the desired location that has been assigned.1 21 -
PublicationMultipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimized Link State Routing-Based for VANET( 2024-01-01)
;Waleed Khalid Ahmed ; ;The Optimal Link State Routing (OLSR) protocol employs multipoint relay (MPR) nodes to disseminate topology control (TC) messages, enabling network topology discovery and maintenance. However, this approach increases control overhead and leads to wasted network bandwidth in stable topology scenarios due to fixed flooding periods. To address these challenges, this paper presents an Efficient Topology Maintenance Algorithm (ETM-OLSR) for Enhanced Link-State Routing Protocols. By reducing the number of MPR nodes, TC message generation and forwarding frequency are minimized. Furthermore, the algorithm selects a smaller subset of TC messages based on the changes in the MPR selection set from the previous cycle, adapting to stable and fluctuating network conditions. Additionally, the sending cycle of TC messages is dynamically adjusted in response to network topology changes. Simulation results demonstrate that the ETM-OLSR algorithm effectively reduces network control overhead, minimizes end-to-end delay, and improves network throughput compared to traditional OLSR and HTR-OLSR algorithms.1 22