Now showing 1 - 10 of 17
  • Publication
    Numerical evaluation of aluminium 6026-T9 fracture toughness
    ( 2021-10-25)
    Zulkifli A.N.
    ;
    ; ;
    Hashim M.S.M.
    ;
    Ismail A.H.
    ;
    Fracture is the separation of an object into two or more pieces caused by crack growth under the action of applied stress. There are many different methods for fracture evaluation has been made but still lacks information on properties of Aluminium 6026-T9. Aluminium 6026 is non-toxic since it does not contain Tin (Sn) and features a great corrosion resistance. This study focuses on the mechanical properties and fracture toughness of Aluminium 6026-T9. The material is cut and shaped into dog-bone specimens by referring the ASTM E8 and was eventually undergoing a tensile test to evaluate the mechanical properties. A linear elastic analysis of three different crack characteristics which are single edge crack, double edge crack and center crack were performed in Mode I analysis to evaluate its fracture toughness. The stress intensity factor (SIF) value near the crack tip obtained from the simulation process were then compared with analytical value and had been discussed. The percentage of error found that the numerical and analytical values are closed to each other.
  • Publication
    Numerical evaluation of aluminium 6026-T9 fracture toughness
    Fracture is the separation of an object into two or more pieces caused by crack growth under the action of applied stress. There are many different methods for fracture evaluation has been made but still lacks information on properties of Aluminium 6026-T9. Aluminium 6026 is non-toxic since it does not contain Tin (Sn) and features a great corrosion resistance. This study focuses on the mechanical properties and fracture toughness of Aluminium 6026-T9. The material is cut and shaped into dog-bone specimens by referring the ASTM E8 and was eventually undergoing a tensile test to evaluate the mechanical properties. A linear elastic analysis of three different crack characteristics which are single edge crack, double edge crack and center crack were performed in Mode I analysis to evaluate its fracture toughness. The stress intensity factor (SIF) value near the crack tip obtained from the simulation process were then compared with analytical value and had been discussed. The percentage of error found that the numerical and analytical values are closed to each other.
      1
  • Publication
    Robot Face and Its Integration to the Mobile Robot for Wireless Signal Collection in the Fingerprinting-Based Indoor Positioning System
    The wireless data collection for instance the Received Signal Strength (RSS) of the Wireless Fidelity (Wi-Fi) remained unfavourable in the Indoor Positioning System utilizing the signal fingerprinting approach. This is because the enormous sampling time and routines works making it tedious human labour. To alleviate this issue, we propose to use a robot for wireless data collection. The robot, named 'ICSiBOT' is a service robot with multiple purpose such as assisting human in daily lives, guest or hospitality robot and man others. This paper mainly describes the ICSiBOT robot face with speech recognition technology and the integration of the robot face to the motion controller. The experimental was conducted to see the correlation between the synthesized instructions from the speech in terms of distance need to be travelled i.e., the location for wireless signal collection and translate them into actual distance travelled. The results showed that the robot is able to travel to the specific distance as instructed to the robot face.
      1
  • Publication
    Analysis of WiFi Spatio-Temporal Data for Organic Fingerprinting-based Indoor Positioning System
    The mobile robot navigation is the next huge topic after positioning utilizing fingerprinting-based Wireless Positioning System (WPS). Many of recent works does not discuss this topic yet since many open problems in positioning topic are not yet solved, for instance the issues on multi-devices heterogeneity, instability of WiFi signals, granularity problems in grid-based indoor environment and many others. However, we anticipate that both positioning and navigation works must run in parallel so that the succession are guaranteed. This paper describes the analysis of spatio-temporal data of the signal obtained from the WiFi Access Point. Initial results suggest that the difference between transmitter heights have an effect on the spatio-temporal data while the handover of maximum signal strengths is inherent when three WiFi APs are used.
      1
  • Publication
    Design and Simulation of a Customize Three-axis Gimbal Structure using Finite Element Analysis Method
    ( 2023-03-01)
    Kamaruzzaman M.A.
    ;
    ;
    This paper presents a Finite Element Analysis (FEA) on a customized three-axis gimbal design application. Examples of applications of the gimbals such as drones, camera stabilizers, and spacecraft. The SolidWorks software checked the gimbal’s FEA characteristics with no existing load or normal conditions. Using the FEA method, a static simulation analysis where the material of this assembly design uses Polylactic Acid (PLA), used mainly by 3D printer machines. The force is given to the gimbal structure and obtains the results of the maximum value of stress in MPa, displacement in mm, and strain. Thus, based on the results obtained from SolidWorks, the structure will not fail. The maximum stress value between parts is 2.31 MPa for the support part and 3.09 MPa for the assembly model when the yield stress value of the PLA material properties is at 70 MPa. The new design structure for the gimbal hardware focuses on academic purposes based on PLA material and is easy to build using a 3D printer. In the summary, the customized three-axis gimbal design using SolidWorks will not fracture when the design is in normal condition which has a total force of 6.87 N, which is equal to 0.70 kg at 3.09 MPa where the weight of the base, O-ring, and servo motors at the U-shape part. In addition, the design can hold up to 230.87 N, which is equal to 23.54 kg at 69.90 MPa of the stress value before it will fail at 70 MPa.
      1
  • Publication
    Integrating Vision System to a Pick and Place Cartesian Robot
    Vision aided pick and place cartesian robot is a combination of machine vision system and robotic system. They communicate with each other simultaneously to perform object sorting. In this project, machine vision algorithm for object sorting to solve the problem in failure sorting due to imperfection of images edges and different types of colours is proposed. The image is acquired by a camera and followed by image calibration. Pre-processing of image is performed through these methods, which are HSI colour space transformation, Gaussian filter for image filtering, Otsu's method for image binarization, and Canny edge detection. LabVIEW edge-based geometric matching is selected for template matching. After the vision application analysed the image, electrical signal will send to robotic arm for object sorting if the acquired image is matched with template image. The proposed machine vision algorithm has yielded an accurate template matching score from 800 to 1000 under different disturbances and conditions. This machine vision algorithm provides more customizable parameters for each methods yet improves the accuracy of template matching.
      1
  • Publication
    A Device-to-Device (D2D) Communication between Mobile Robots using Wireless Communication Protocol in Dynamic Environments
    ( 2024-03-11)
    Sarhan M.A.H.
    ;
    Hashim M.S.M.
    ;
    ; ; ; ;
    Othman S.M.
    ;
    Kanafiah S.N.A.M.
    ;
    Mobile robots must have the ability to guarantee safety for operation in a dynamic environment and close to other moving objects. There are many research had been conducted to make the robot safer by utilizing sensors and big data technology to make the mobile robot able to navigate autonomously and intelligently. One of the key elements in autonomous robots is communication between robots. In this paper, device-to-device (D2D) technology has been used to develop communication between robots. To establish the algorithm for D2D communications, radio frequency (RF) used as communication protocols that can perform D2D communication in real-time applications. The performance of D2D communication was then be assessed in terms of distance and latency. RF transceiver module has been mounted on the robot with Arduino to allow communication between mobile robot to other mobile robots in order to transfer data from robot's sensors to the other mobile robots. By utilizing the gathered information and data, the robot can assess its surroundings and predict the movement of other robots to avoid collisions between robots. The results show that the RF transceiver module is capable to send and receive data between two robots with latency up to 4.865s. It is envisaged that the proposed module can be very useful for developing D2D communication between robots to operate in dynamic environments.
      23  3
  • Publication
    Position Tracking Performance with Fine Tune Ziegler-Nichols PID Controller for Electro-Hydraulic Actuator in Aerospace Vehicle Model
    Electro-Hydraulic Actuator (EHA) system is a third order non-linear system which is highly suffer from system uncertainties such as Coulomb friction, viscous friction and pump leakage coefficient which makes this system more complicated for the designing of the controller. The Proportional-Integral-Derivative (PID) controller has proposed in this paper to control EHA system and main problem in its application is to tune the parameter to its optimum value. Two different methods are used to tune the PID controller which are trial and error and Ziegler-Nichols method. MATLAB Simulink is used to simulate the system. In order to determine the performance of EHA system for the position tracking. 3 different of external disturbance such as 0N, 5000N and 10000N has been injected into the system. Simulation results show that the Ziegler-Nichols fine tuning method provides the better tracking performance when compared to the trial and error method for every specific disturbance setting. The Ziegler Nichols method provides better disturbance rejection as the performances indexes such as percentage overshoot, settling time and steady state error are not affected by the varying of disturbance.
      1  17
  • Publication
    IoT Based Smart Betta Fish Monitoring system with fish fatality prediction.
    This study enlightens the importance of rearing water quality to Betta fish health. A water quality monitoring system was developed based on water quality parameters namely water pH, temperature (°C) and TDS level (ppm). Fuzzy Logic Algorithm was applied to predict the possibility of the fish to get infected by the disease using combination of the water quality parameters value. Graphical User Interface (GUI) was developed to test the efficiency of the fish disease prediction system using fuzzy logic algorithm before the fuzzy rule been embedded to the IOT system. Arduino Uno Wi-Fi R2.0 and Blynk Apps used for enabling the system to update the aquarium water quality to owner in real-time. Hydroponic technology implemented in this project for recirculate rearing water inside the fish tank. Theoretically, the aquaponic system will help regulate the water tank parameters in optimum range and Betta Splendens should be free from all diseases.
      2  15
  • Publication
    Design and Simulation of a Customize Three-axis Gimbal Structure using Finite Element Analysis Method
    ( 2023-03-01)
    Kamaruzzaman M.A.
    ;
    ;
    This paper presents a Finite Element Analysis (FEA) on a customized three-axis gimbal design application. Examples of applications of the gimbals such as drones, camera stabilizers, and spacecraft. The SolidWorks software checked the gimbal’s FEA characteristics with no existing load or normal conditions. Using the FEA method, a static simulation analysis where the material of this assembly design uses Polylactic Acid (PLA), used mainly by 3D printer machines. The force is given to the gimbal structure and obtains the results of the maximum value of stress in MPa, displacement in mm, and strain. Thus, based on the results obtained from SolidWorks, the structure will not fail. The maximum stress value between parts is 2.31 MPa for the support part and 3.09 MPa for the assembly model when the yield stress value of the PLA material properties is at 70 MPa. The new design structure for the gimbal hardware focuses on academic purposes based on PLA material and is easy to build using a 3D printer. In the summary, the customized three-axis gimbal design using SolidWorks will not fracture when the design is in normal condition which has a total force of 6.87 N, which is equal to 0.70 kg at 3.09 MPa where the weight of the base, O-ring, and servo motors at the U-shape part. In addition, the design can hold up to 230.87 N, which is equal to 23.54 kg at 69.90 MPa of the stress value before it will fail at 70 MPa.
      1  19