Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2022
  5. Enhancement of Power Conversion Efficiency with Zinc Oxide as Photoanode and Cyanococcus, Punica granatum L., and Vitis vinifera as Natural Fruit Dyes for Dye-Sensitized Solar Cells
 
Options

Enhancement of Power Conversion Efficiency with Zinc Oxide as Photoanode and Cyanococcus, Punica granatum L., and Vitis vinifera as Natural Fruit Dyes for Dye-Sensitized Solar Cells

Journal
Coatings
Date Issued
2022-11-01
Author(s)
Ili Salwani Mohamad
Universiti Malaysia Perlis
Mohd Natashah Norizan
Universiti Malaysia Perlis
Norsuria Mahmed
Universiti Malaysia Perlis
Jamalullail N.
Dewi Suriyani Che Halin
Universiti Malaysia Perlis
Mohd Arif Anuar Mohd Salleh
Universiti Malaysia Perlis
Sandu A.V.
Baltatu M.S.
Vizureanu P.
DOI
10.3390/coatings12111781
Abstract
Ruthenium N719 is a well-known material used as the dye in commercial dye-sensitized solar cell (DSSC) devices. However, it poses risks to human health and the environment over time. On the other hand, titanium dioxide (TiO2) has low electron mobility and high recombination losses when used as a photoanode in this photovoltaic technology device. In addition, using Ruthenium as the dye material harms the environment and human health. As an alternative sensitizer to compensate Ruthenium on two different photoanodes (TiO2 and ZnO), we constructed DSSC devices in this study using three different natural dyes (blueberry, pomegranate, and black grape). In good agreement with the anthocyanin content in the fruits, black grape, with the highest anthocyanin content (450.3 mg/L) compared to other fruit dyes (blueberry—386.6 mg/L and pomegranate—450.3 mg/L), resulted in the highest energy conversion efficiency (3.63%) for the natural dye-based DSSC. Furthermore, this research proved that the electrical performance of natural dye sensitizer in DSSC applications with a ZnO photoanode is better than using hazardous Ru N719 dye with a TiO2 photoanode owing to the advantage of high electron mobility in ZnO.
Funding(s)
Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Subjects
  • anthocyanin | dye-sen...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies