Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Center of Excellence, Water Research and Environmental Sustainability Growth (WAREG)
  4. Conference Publications
  5. Study on biohydrogen production using different type of carrier materials in attached growth system
 
Options

Study on biohydrogen production using different type of carrier materials in attached growth system

Journal
IOP Conference Series: Earth and Environmental Science
ISSN
17551307
Date Issued
2020-06-10
Author(s)
Ashah M.A.
Universiti Malaysia Perlis
Nabilah Aminah Lutpi
Universiti Malaysia Perlis
Wong Yee Shian
Universiti Malaysia Perlis
Ong Soon An
Universiti Malaysia Perlis
Malek M.A.
Universiti Tenaga Nasional
DOI
10.1088/1755-1315/476/1/012105
Abstract
Renewable energy is known as clean energy with free from greenhouse gas emissions and global warming effects. It is generated from natural resources and one of the most promising renewable energy is biohydrogen. Biohydrogen production gets a great attention around the world because it could remove organic biomass and at the same time supplying clean hydrogen energy. In this study, three support carriers were used namely granular activated carbon (GAC), glass beads (GB) and moringa oleifera seeds (MOS). The main keys of this study was to identify the best support carrier that capable to enhance the biohydrogen production in attached growth system using Palm Oil Mill Effluent (POME) as feedstock. On the other hand, the physicochemical of the attached-biofilm were also investigated by using Scanning Electron Microscopy (SEM). Other parameter such as hydrogen concentration, volume of biogas, and kinetic study by using modified Gompertz equation has also been studied. At the end of the study, the best performance of biohydrogen production was performed by using GAC with hydrogen yield (HY) = 1.52 mol H2/mol glucose and the hydrogen production rate (HPR) = 58.50 mmol H2/l.d, followed by GB which is HY = 1.43 mol H2/mol glucose and HPR = 54.840 mmol H2/l.d and the last, MOS with HY = 1.08 mol H2/mol glucose and HPR = 41.44 mmol H2/l.d. This study has shown that proper selection of support carrier could reflect the evolution of biohydrogen production.
Funding(s)
Universiti Malaysia Perlis
File(s)
research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
Downloads
3
Acquisition Date
Nov 19, 2024
View Details
google-scholar
  • About Us
  • Contact Us
  • Policies